Journal of Plant Research

, Volume 128, Issue 4, pp 665–678 | Cite as

Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response

  • Eduardo Larriba
  • María D. L. A. Jaime
  • Corey Nislow
  • José Martín-Nieto
  • Luis Vicente Lopez-Llorca
Regular Paper

Abstract

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5 % of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.

Keywords

Effector-triggered immunity Endophytism Hordeum vulgare Plant growth Pochonia chlamydosporia Root transcriptomics 

Notes

Acknowledgments

This research was funded by the Spanish Ministry of Science and Innovation Grant AGL2011-29297. We thank Natalia Navarro Román and Juan Carlos García Villena (University of Alicante) for help with the artwork and for custom script design, respectively.

Supplementary material

10265_2015_731_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 86 kb)
10265_2015_731_MOESM2_ESM.pdf (155 kb)
Supplementary material 2 (PDF 154 kb)
10265_2015_731_MOESM3_ESM.pdf (144 kb)
Supplementary material 3 (PDF 144 kb)
10265_2015_731_MOESM4_ESM.pdf (99 kb)
Supplementary material 4 (PDF 99 kb)
10265_2015_731_MOESM5_ESM.pdf (47 kb)
Supplementary material 5 (PDF 47 kb)
10265_2015_731_MOESM6_ESM.pdf (163 kb)
Supplementary material 6 (PDF 162 kb)

References

  1. Abu-Romman S (2012) Molecular cloning and expression of 12-oxophytodienoic acid reductase gene from barley. Aust J Crop Sci 6:649–655Google Scholar
  2. Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540PubMedCrossRefGoogle Scholar
  3. Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150CrossRefGoogle Scholar
  4. Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875PubMedCrossRefGoogle Scholar
  5. Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488PubMedCrossRefGoogle Scholar
  6. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399PubMedCrossRefGoogle Scholar
  7. Benkova E, Hejátko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396PubMedCrossRefGoogle Scholar
  8. Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692PubMedCrossRefGoogle Scholar
  9. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–407PubMedCrossRefGoogle Scholar
  10. Bordallo JJ, Lopez-Llorca LV, Jansson HB, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499CrossRefGoogle Scholar
  11. Carneiro RMDG, Hidalgo-Díaz L, Martins I, de Souza Ayres, Silva KF, Guimarães de Sousa M, Tigano MS (2011) Effect of nematophagous fungi on reproduction of Meloidogyne enterolobii on guava (Psidium guajava) plants. Nematology 13:721–728CrossRefGoogle Scholar
  12. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242PubMedCrossRefGoogle Scholar
  13. Chrispeels HE, Oettinger H, Janvier N, Tague BW (2000) AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol 42:279–290PubMedCrossRefGoogle Scholar
  14. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K Barley GeneChip comes of age. Plant Physiol 134:960–968PubMedCentralPubMedCrossRefGoogle Scholar
  15. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194–D1201. http://www.plexdb.org
  17. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dias-Arieira CR, Santana SM, De Freitas LG, Da Cunha TPL, Biela F, Puerari HH, Chiamolera FM (2011) Efficiency of Pochonia chlamydosporia in Meloidogyne incognita control in lettuce crop (Lactuca sativa L.). J Food Agric Environ 9:561–563Google Scholar
  19. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 8:539–548CrossRefGoogle Scholar
  20. Ebadi M, Fatemy S, Riahi H (2009) Evaluation of Pochonia chlamydosporia var. chlamydosporia as a control agent of Meloidogyne javanica on pistachio. Biocontrol Sci Technol 19:689–700CrossRefGoogle Scholar
  21. Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57:33–42CrossRefGoogle Scholar
  22. Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343PubMedCrossRefGoogle Scholar
  23. Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gupta SK, Rai AK, Kanwar SS, Sharma TR (2012) Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS ONE 7:e42578PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471PubMedCrossRefGoogle Scholar
  26. Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13PubMedCrossRefGoogle Scholar
  27. Janská A, Hodek J, Svoboda P, Zámečník J, Prášil IT, Vlasáková E, Milella L, Ovesná J (2013) The choice of reference gene set for assessing gene expression in barley (Hordeum vulgare L.) under low temperature and drought stress. Mol Genet Genomics 288:639–649PubMedCrossRefGoogle Scholar
  28. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664PubMedCrossRefGoogle Scholar
  29. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441PubMedCrossRefGoogle Scholar
  30. Kim SY, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6:144PubMedCentralPubMedCrossRefGoogle Scholar
  31. Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112PubMedCrossRefGoogle Scholar
  32. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lahrmann U, Zuccaro A (2012) Opprimo ergo sum-evasion and suppression in the root endophytic fungus Piriformospora indica. Mol Plant Microbe Interact 25:727–737PubMedCrossRefGoogle Scholar
  34. Larriba E, Martín-Nieto J, Lopez-Llorca LV (2012) Gene cloning, molecular modeling, and phylogenetics of serine protease P32 and serine carboxypeptidase SCP1 from nematophagous fungi Pochonia rubescens and Pochonia chlamydosporia. Can J Microbiol 58:815–827PubMedCrossRefGoogle Scholar
  35. Lee JH, Yun HS, Kwon C (2012) Molecular communications between plant heat shock responses and disease resistance. Mol Cells 34:109–116PubMedCentralPubMedCrossRefGoogle Scholar
  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  37. Lopez-Llorca LV, Bordallo JJ, Salinas J, Monfort E, López-Serna ML (2002) Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron 33:261–267CrossRefGoogle Scholar
  38. Lopez-Llorca LV, Gómez-Vidal S, Monfort E, Larriba E, Casado-Vela J, Elortza F, Jansson HB, Salinas J, Martín-Nieto J (2010) Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genet Biol 47:342–351PubMedCrossRefGoogle Scholar
  39. Ma W (2011) Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci 4:342–346CrossRefGoogle Scholar
  40. Maciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009a) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228PubMedCrossRefGoogle Scholar
  41. Maciá-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009b) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401CrossRefGoogle Scholar
  42. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105PubMedCrossRefGoogle Scholar
  43. Mannion AM, Morse S (2012) Biotechnology in agriculture: agronomic and environmental considerations and reflections based on 15 years of GM crops. Prog Phys Geog 36:747–763CrossRefGoogle Scholar
  44. Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716PubMedGoogle Scholar
  45. Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A (2006) The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics 7:509–522PubMedCentralPubMedCrossRefGoogle Scholar
  46. Mogk A, Schlieker C, Friedrich KL, Schönfeld HJ, Vierling E, Bukau B (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042PubMedCrossRefGoogle Scholar
  47. Molitor A, Zajic D, Voll LM, Pons-K Hnemann J, Samans B, Kogel KH, Waller F (2011) Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. Mol Plant Microbe Interact 24:1427–1439PubMedCrossRefGoogle Scholar
  48. Monfort E, Lopez-Llorca LV, Jansson H-B, Salinas J, Park JO, Sivasithamparam K (2005) Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biol Biochem 37:1229–1235CrossRefGoogle Scholar
  49. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630CrossRefGoogle Scholar
  50. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedCentralPubMedCrossRefGoogle Scholar
  51. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html
  52. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655PubMedCentralPubMedCrossRefGoogle Scholar
  53. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  54. Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551PubMedCentralPubMedCrossRefGoogle Scholar
  55. Pineda A, Dicke M, Pieters CMJ, Pozo MJ (2013) Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Funct Ecol 27:374–586CrossRefGoogle Scholar
  56. Pingali P (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109:12302–12308PubMedCentralPubMedCrossRefGoogle Scholar
  57. Richter R, Behringer C, Zourelidou M, Schwechheimer C (2013) Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:13192–13197PubMedCentralPubMedCrossRefGoogle Scholar
  58. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  59. Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474PubMedCrossRefGoogle Scholar
  60. Schöffl F, Prändl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, pp 81–98Google Scholar
  61. Siddique M, Gernhard S, Von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197PubMedCentralPubMedCrossRefGoogle Scholar
  62. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3Google Scholar
  63. Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9PubMedCrossRefGoogle Scholar
  64. Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol 45:28–39PubMedCrossRefGoogle Scholar
  65. Takahashi H (2013) Auxin biology in roots. Plant Root 7:49–64CrossRefGoogle Scholar
  66. Thurau T, Kifle S, Jung C, Cai D (2003) The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol 3:643–660CrossRefGoogle Scholar
  67. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770PubMedCentralPubMedCrossRefGoogle Scholar
  68. Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229. http://mapman.gabipd.org/web/guest/mapman
  69. Van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FLW (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397PubMedCrossRefGoogle Scholar
  70. Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12:239–244PubMedCrossRefGoogle Scholar
  71. Vick BA, Zimmerman DC (1986) Characterization of 12-oxo-phytodienoic acid reductase in corn: the jasmonic acid pathway. J Plant Physiol 80:202–205CrossRefGoogle Scholar
  72. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol 42:579–620CrossRefGoogle Scholar
  73. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391PubMedCentralPubMedCrossRefGoogle Scholar
  74. Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel KH (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70PubMedCrossRefGoogle Scholar
  75. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  76. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297PubMedCentralPubMedCrossRefGoogle Scholar
  77. Zelicourt AD, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Eduardo Larriba
    • 1
    • 2
  • María D. L. A. Jaime
    • 3
    • 4
  • Corey Nislow
    • 5
    • 6
    • 7
  • José Martín-Nieto
    • 2
    • 8
  • Luis Vicente Lopez-Llorca
    • 1
    • 2
  1. 1.Department of Marine Sciences and Applied BiologyUniversity of AlicanteAlicanteSpain
  2. 2.Multidisciplinary Institute for Environmental Studies ‘Ramón Margalef’University of AlicanteAlicanteSpain
  3. 3.Department of Cell and Systems BiologyUniversity of TorontoMississaugaCanada
  4. 4.National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA
  5. 5.Department of Molecular GeneticsUniversity of TorontoTorontoCanada
  6. 6.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada
  7. 7.Department of Pharmaceutical SciencesUniversity of British ColumbiaVancouverCanada
  8. 8.Department of Physiology, Genetics and MicrobiologyUniversity of AlicanteAlicanteSpain

Personalised recommendations