Journal of Plant Research

, Volume 128, Issue 1, pp 49–61 | Cite as

Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates

JPR Symposium Plasmodesmata: Function and Diversity in Plant Intercellular Communication

Abstract

Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar oligomerization, and leads to a high sugar accumulation in the phloem, even though the phloem is not symplasmically isolated, but well coupled by plasmodesmata (PD). Hence the mode polymer-trap mode is also designated active symplasmic loading. For woody angiosperms and gymnosperms an alternate loading mode is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic loaders a considerable part of water flux happens through the PD between bundle sheath and phloem.

Keywords

Active phloem loading Bulk flow Diffusion Passive phloem loading Plasmodesmata Symplasmic transport 

References

  1. Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adams WW (2007) Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. New Phytol 173:722–731. doi:10.1111/j.1469-8137.2006.01954.x PubMedCrossRefGoogle Scholar
  2. Andriunas FA, Zhang HM, Xia X, Patrick JW, Offler CE (2013) Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00221
  3. Batashev DR, Pakhomova MV, Razumovskaya AV, Voitsekhovskaja OV, Gamalei YV (2013) Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00312
  4. Becker P, Tyree MT, Tsuda M (1999) Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. Tree Physiol 19:445–452PubMedCrossRefGoogle Scholar
  5. Beebe DU, Russin WA (1999) Plasmodesmata in the phloem-loading pathway. In: van Bel AJE, Van Kesteren WP (eds) Plasmodesmata. Springer Berlin, pp 261–293. doi:10.1007/978-3-642-60035-7_15
  6. Behnke HD (1990) Cycads and gnetophytes. In: Behnke HD, Sjolund RD (eds) sieve elements. Springer Berlin, pp 89–101. doi:10.1007/978-3-642-74445-7_5
  7. Ben Baaziz K, Lopez D, Rabot A, Combes D, Gousset A, Bouzid S, Cochard H, Sakr S, Venisse JS (2012) Light-mediated K-leaf induction and contribution of both the PIP1 s and PIP2 s aquaporins in five tree species: walnut (Juglans regia) case study. Tree Physiol 32:423–434. doi:10.1093/treephys/tps022 CrossRefGoogle Scholar
  8. Botha CEJ, Cross RHM, Liu L (2007) Comparative Structure of Specialised Monocotyledonous Leaf Blade Plasmodesmata. In: Plasmodesmata. Blackwell, pp 73–89. doi:10.1002/9780470988572.ch4
  9. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74. doi:10.1007/s00709-010-0252-3 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Canny MJ (1993) Transfusion tissue of pine needles as a site of retrieval of solutes from the transpiration stream. New Phytol 123:227–232CrossRefGoogle Scholar
  11. Carde JP (1973) Transfer tissue (strasburger cells) in needles of maritime pine (Pinus pinaster Ait).1. Histology and ultrastructural study of grown up tissue. J Microsc Oxf 17:65–88Google Scholar
  12. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by sweet proteins as a key step for phloem transport. Science 335:207–211. doi:10.1126/science.1213351 PubMedCrossRefGoogle Scholar
  13. Cui H, Kong D, Liu X, Hao Y (2014) SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J 78:319–327. doi:10.1111/tpj.12470 PubMedCrossRefGoogle Scholar
  14. Davidson A, Keller F, Turgeon R (2011) Phloem loading, plant growth form, and climate. Protoplasma 248:153–163. doi:10.1007/s00709-010-0240-7 PubMedCrossRefGoogle Scholar
  15. Dölger J, Rademaker H, Liesche J, Schulz A, Bohr T (2014) Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants. Phys Rev E 90:042704CrossRefGoogle Scholar
  16. Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30. doi:10.1007/Bf02680127 PubMedCrossRefGoogle Scholar
  17. Ehlers K, van Bel AJE (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231:371–385. doi:10.1007/s00425-009-1046-8 PubMedCrossRefGoogle Scholar
  18. Faulkner C, Akman O, Bell K, Jeffree C, Oparka K (2008a) Peeking into pit fields - A new model of secondary plasmodesmata formation. Comp Biochem Phys A 150:S140–S141. doi:10.1016/j.cbpa.2008.04.347 CrossRefGoogle Scholar
  19. Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008b) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518. doi:10.1105/tpc.107.056903 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fraysse LC, Wells B, McCann MC, Kjellbom P (2005) Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biol Cell 97:519–534PubMedCrossRefGoogle Scholar
  21. Fu QS, Cheng LL, Guo YD, Turgeon R (2011) Phloem loading strategies and water relations in trees and herbaceous plants. Plant Physiol 157:1518–1527. doi:10.1104/pp.111.184820 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fuchs M, van Bel AJ, Ehlers K (2011) Do symplasmic networks in cambial zones correspond with secondary growth patterns? Protoplasma 248:141–151. doi:10.1007/s00709-010-0208-7 PubMedCrossRefGoogle Scholar
  23. Gilbertson RL, Rojas MR, Lucas WJ (2007) Plasmodesmata and phloem: conduits for local and long-distance signaling. In: Plasmodesmata. Blackwell, pp 162–187. doi:10.1002/9780470988572.ch8
  24. Glockmann C, Kollmann R (1996) Structure and development of cell connections in the phloem of Metasequoia glyptostroboides needles.1. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193:191–203. doi:10.1007/Bf01276645 CrossRefGoogle Scholar
  25. Haritatos E, Keller F, Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L leaves: implications for phloem loading. Planta 198:614–622CrossRefGoogle Scholar
  26. Haritatos E, Ayre BG, Turgeon R (2000a) Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. Plant Physiol 123:929–937. doi:10.1104/Pp.123.3.929 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Haritatos E, Medville R, Turgeon R (2000b) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–111. doi:10.1007/s004250000268 PubMedCrossRefGoogle Scholar
  28. Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985. doi:10.1093/Jxb/Erp171 PubMedCrossRefGoogle Scholar
  29. Holthaus U, Schmitz K (1991) Distribution and immunolocalization of stachyose synthase in Cucumis melo L. Planta 185:479–486PubMedCrossRefGoogle Scholar
  30. Jensen KH, Liesche J, Bohr T, Schulz A (2012) Universality of phloem transport in seed plants. Plant Cell Environ 35:1065–1076. doi:10.1111/j.1365-3040.2011.02472.x PubMedCrossRefGoogle Scholar
  31. Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599. doi:10.1016/j.pbi.2005.09.013 PubMedCrossRefGoogle Scholar
  32. Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. P Natl Acad Sci USA 102:11945–11950. doi:10.1073/pnas.0505622102 CrossRefGoogle Scholar
  33. Kollmann R, Glockmann C (1999) Multimorphology and nomenclature of plasmodesmata in higher plants. In: van Bel AJE, Van Kesteren WP (eds) Plasmodesmata. Springer, Berlin, pp 149–172. doi:10.1007/978-3-642-60035-7_10
  34. Krull R (1960) Untersuchungen über den Bau und die Entwicklung der Plasmodesmen im Rindenparenchym von Viscum album. Planta 55:598–629. doi:10.1007/Bf01884804 CrossRefGoogle Scholar
  35. Laur J, Hacke UG (2014) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203:388–400. doi:10.1111/Nph.12806 PubMedCrossRefGoogle Scholar
  36. Lee SH, Chung GC, Zwiazek JJ (2009) Effects of irradiance on cell water relations in leaf bundle sheath cells of wild-type and transgenic tobacco (Nicotiana tabacum) plants overexpressing aquaporins. Plant Sci 176:248–255. doi:10.1016/j.plantsci.2008.10.013 CrossRefGoogle Scholar
  37. Liesche J, Schulz A (2012) In vivo quantification of cell coupling in plants with different phloem-loading strategies. Plant Physiol 159:355–365. doi:10.1104/pp.112.195115 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00207
  39. Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190. doi:10.1007/s00709-010-0239-0 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Muehling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465. doi:10.1034/j.1399-3054.2001.1110405.x PubMedCrossRefGoogle Scholar
  41. Lopez D, Venisse JS, Fumanal B, Chaumont F, Guillot E, Daniels MJ, Cochard H, Julien JL, Gousset-Dupont A (2013) Aquaporins and leaf hydraulics: poplar sheds new light. Plant Cell Physiol 54:1963–1975. doi:10.1093/Pcp/Pct135 PubMedCrossRefGoogle Scholar
  42. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y et al (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388. doi:10.1111/Jipb.12041 PubMedCrossRefGoogle Scholar
  43. Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, JenaGoogle Scholar
  44. Öner-Sieben S, Lohaus G (2014) Apoplastic and symplastic phloem loading in Quercus robur and Fraxinus excelsior. J Exp Bot 65:1905–1916. doi:10.1093/Jxb/Eru066 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750. doi:10.1111/j.1365-313X.1992.tb00143.x CrossRefGoogle Scholar
  46. Orlich G, Hofbrückl M, Schulz A (1998) A symplasmic flow of sucrose contributes to phloem loading in Ricinus cotyledons. Planta 206:108–116. doi:10.1007/s004250050380 CrossRefGoogle Scholar
  47. Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of lucifer yellow. Planta 164:473–479. doi:10.1007/Bf00395962 PubMedCrossRefGoogle Scholar
  48. Patrick JW (2012) Fundamentals of phloem transport physiology. In: Thompson GA, van Bel AJE (eds) Phloem: molecular cell biology, systemic communication, biotic interactions. Wiley, pp 30–59. doi:10.1002/9781118382806.ch3
  49. Pina A, Errea P, Schulz A, Martens HJ (2009) Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiol 29:809–818. doi:10.1093/treephys/tpp025 PubMedCrossRefGoogle Scholar
  50. Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of plantago major in response to salt stress. Plant Physiol 144:1029–1038. doi:10.1104/pp.106.089151 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Reidel EJ, Rennie EA, Amiard V, Cheng L, Turgeon R (2009) Phloem loading strategies in three plant species that transport sugar alcohols. Plant Physiol 149:1601–1608. doi:10.1104/pp.108.134791 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. P Natl Acad Sci USA 106:14162–14167. doi:10.1073/pnas.0902279106 CrossRefGoogle Scholar
  53. Schmitt B, Stadler R, Sauer N (2008) Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport. Plant Physiol 148:187–199. doi:10.1104/pp.108.120410 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Schmitz K, Cuypers B, Moll M (1987) Pathway of assimilate transfer between mesophyll-cells and minor veins in leaves of cucumis-melo L. Planta 171:19–29. doi:10.1007/Bf00395064 PubMedCrossRefGoogle Scholar
  55. Schobert C, Lucas W, Franceschi V, Frommer W (2000) Intercellular transport and phloem loading of sucrose, oligosaccharides and amino acids. In: Leegood R, Sharkey T, von Caemmerer S (eds) Photosynthesis, vol 9. Advances in photosynthesis and respiration. Springer, Netherlands, pp 249–274. doi:10.1007/0-306-48137-5_11
  56. Schulz A (1990) Conifers. In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin, pp 63–88. doi:10.1007/978-3-642-74445-7_4
  57. Schulz A (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166:153–164. doi:10.1007/bf01322778 CrossRefGoogle Scholar
  58. Schulz A (1998) Phloem. Structure Related to Function. In: Behnke HD, Esser K, Kadereit JW, Lüttge U, Runge M (eds) Progress in Botany, vol 59. Progress in botany. Springer, Berlin, pp 429–475. doi:10.1007/978-3-642-80446-5_16
  59. Schulz A (2005) Role of Plasmodesmata in solute loading and unloading. In: Oparka KJ (ed) Plasmodesmata. Annual plant reviews, vol 18. Blackwell, Oxford, pp 135–161Google Scholar
  60. Schulz A, Kühn C, Riesmeier JW, Frommer WR (1998) Ultrastructural effects in potato leaves due to antisense-inhibition of the sucrose transporter indicate an apoplasmic mode of phloem loading. Planta 206:533–543. doi:10.1007/s004250050430 CrossRefGoogle Scholar
  61. Slewinski TL, Anderson AA, Zhang CK, Turgeon R (2012) Scarecrow plays a role in establishing kranz anatomy in maize leaves. Plant Cell Physiol 53:2030–2037. doi:10.1093/Pcp/Pcs147 PubMedCrossRefGoogle Scholar
  62. Slewinski TL, Zhang CK, Turgeon R (2013) Structural and functional heterogeneity in phloem loading and transport. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00244
  63. Steinberg G, Kollmann R (1994) A quantitative-analysis of the interspecific plasmodesmata in the non-division walls of the plant chimera Laburnocytisus adamii (Poit) schneid. Planta 192:75–83Google Scholar
  64. Tan QM, Grennan AK, Pelissier HC, Rentsch D, Tegeder M (2008) Characterization and expression of French bean amino acid transporter PvAAP1. Plant Sci 174:348–356. doi:10.1016/j.plantsci.2007.12.008 CrossRefGoogle Scholar
  65. Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878. doi:10.1093/Jxb/Eru012 PubMedCrossRefGoogle Scholar
  66. Thompson GA, Schulz A (1999) Macromolecular trafficking in the phloem. Trends Plant Sci 4:354–360. doi:10.1016/s1360-1385(99)01463-6 PubMedCrossRefGoogle Scholar
  67. Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1:418–423. doi:10.1016/S1360-1385(96)10045-5 CrossRefGoogle Scholar
  68. Turgeon R, Beebe DU (1991) The evidence for symplastic Phloem loading. Plant Physiol 96:349–354PubMedCentralPubMedCrossRefGoogle Scholar
  69. Turgeon R, Gowan E (1990) Phloem loading in coleus blumei in the absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physiol 94:1244–1249. doi:10.1104/Pp.94.3.1244 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Turgeon R, Hepler PK (1989) Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita pepo L. leaves. Planta 179:24–31. doi:10.1007/BF00395767 PubMedCrossRefGoogle Scholar
  71. Turgeon R, Medville R (1998) The absence of phloem loading in willow leaves. P Natl Acad Sci USA 95:12055–12060. doi:10.1073/pnas.95.20.12055 CrossRefGoogle Scholar
  72. Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in cucurbita-pepo leaves. Protoplasma 83:217–232. doi:10.1007/Bf01282555 CrossRefGoogle Scholar
  73. Turgeon R, Beebe DU, Gowan E (1993) The intermediary cell—minor-vein anatomy and raffinose oligosaccharide synthesis in the scrophulariaceae. Planta 191:446–456CrossRefGoogle Scholar
  74. van Bel AJE, Furch ACU, Hafke JB, Knoblauch M, Patrick JW (2011) (Questions) m(n) on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330. doi:10.1016/j.plantsci.2011.05.008 PubMedCrossRefGoogle Scholar
  75. Voitsekhovskaja OV, Koroleva OA, Batashev DR, Knop C, Tomos AD, Gamalei YV, Heldt HW, Lohaus G (2006) Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata? Plant Physiol 140:383–395PubMedCentralPubMedCrossRefGoogle Scholar
  76. Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L and Cucurbita pepo L. Planta 199:425–432CrossRefGoogle Scholar
  77. Volk GM, Haritatos EE, Turgeon R (2003) Galactinol synthase gene expression in melon. J Am Soc Hortic Sci 128:8–15Google Scholar
  78. Wright KM, Roberts AG, Martens HJ, Sauer N, Oparka KJ (2003) Structural and functional vein maturation in developing tobacco leaves in relation to AtSUC2 promoter activity. Plant Physiol 131:1555–1565. doi:10.1104/pp.102.016022 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603PubMedGoogle Scholar
  80. Zhang C, Han L, Slewinski TL, Sun J, Zhang J, Wang ZY, Turgeon R (2014) Symplastic phloem loading in poplar. Plant Physiol. doi:10.1104/pp.114.245845 Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations