Advertisement

Journal of Plant Research

, Volume 127, Issue 6, pp 651–660 | Cite as

Polymorphisms of E1 and GIGANTEA in wild populations of Lotus japonicus

  • Tomomi WakabayashiEmail author
  • Hana Oh
  • Masayoshi Kawaguchi
  • Kyuya Harada
  • Shusei Sato
  • Hajime Ikeda
  • Setoguchi Hiroaki
Regular Paper
  • 563 Downloads

Abstract

In plants, timing of flowering is an essential factor that controls the survival rates of descendants. The circadian clock genes E1 and GIGANTEA (GI) play a central role in transmitting signals to FLOWERING LOCUS T (FT) in leguminous plants. Lotus japonicus is a wild Japanese species that ranges from northern Hokkaido to the southern Ryukyus and exhibits a wide range in terms of the time between seeding and first flowering. In this study, we first identified LjGI and analyzed polymorphisms of LjE1 and LjGI among wild populations covering the entire distribution range of this species in Japan. LjGI had a coding sequence (CDS) length of 3495 bp and included 14 exons. The homologies of DNA and amino acid sequences between LjGI and GmGI were 89 and 88 % (positive rate was 92 %), respectively. LjE1 harbored five nucleic acid changes in a 552 bp CDS, all of which were nonsynonymous; four of the changes were located in the core function area. LjE1 alleles exhibited partial north–south differentiation and non-neutrality. In contrast, the LjGI harbored one synonymous and one nonsynonymous change. Thus, our study suggests that LjE1 may be involved in the control of flowering times, whereas LjGI may be under strong purifying selection.

Keywords

GIGANTEA E1 Circadian clock Lotus japonicus Nonsynonymous change 

Notes

Acknowledgments

We express our appreciation to the National Bioresource Project (Legume Base), University of Miyazaki, Japan, for providing the seeds of Lotus japonicus, and members of the Setoguchi laboratory for their support. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science Nos. 24247013, 23128508, and 25128708 to H.S and a Grant-in-Aid for Scientific Research on Innovative Areas, “Genetic Bases for the Evolution of Complex Adaptive Traits” from the Japan Society.

Supplementary material

10265_2014_649_MOESM1_ESM.tif (2 mb)
Supplementary material 1 (TIFF 2043 kb)
10265_2014_649_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 10 kb)

References

  1. Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883PubMedCrossRefGoogle Scholar
  2. Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664PubMedCrossRefGoogle Scholar
  3. Bernard RL (1971) Two genes for time of flowering in soybeans. Crop Sci 11:242–244CrossRefGoogle Scholar
  4. Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232CrossRefGoogle Scholar
  5. Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Cytol 13:703–707Google Scholar
  6. Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long day length. Soybean Genet Newsl 7:26–29Google Scholar
  7. Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701CrossRefGoogle Scholar
  8. Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527CrossRefGoogle Scholar
  9. Dodd NA, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd MJ, Millar JA, Webb A (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633PubMedCrossRefGoogle Scholar
  10. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–229PubMedCrossRefGoogle Scholar
  12. Farre EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14:401–410PubMedCrossRefGoogle Scholar
  13. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688PubMedCentralPubMedCrossRefGoogle Scholar
  14. Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606Google Scholar
  15. Hecht V, Foucher F, Ferrándiz C, Macknight R, Navarro C, Morin J, Vardy EM, Ellis N, Beltrán PJ, Rameau C, Weller LJ (2005) Conservation of Arabidopsis flowering genes in model Legumes. Plant Physiol 137:1420–1434PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hyten DL, Song Q, Zhu Y, Choi I, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103(45):16666–16671PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kai S, Tanaka H, Hashiguchi M, Iwata H, Akashi R (2010) Analysis of genetic diversity and morphological traits of Japanese Lotus japonicus for establishment of a core collection. Breed Sci 60:436–446CrossRefGoogle Scholar
  18. Kawaguchi M (2000) Lotus japonicus ‘miyakojima’ MG-20: an early-flowering accession suitable for indoor handling. J Plant Res 113:507–509CrossRefGoogle Scholar
  19. Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Cell Dev Biol 55:521–535Google Scholar
  20. Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1989PubMedCentralPubMedCrossRefGoogle Scholar
  21. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  22. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007PubMedCentralPubMedCrossRefGoogle Scholar
  23. Locke J, Kozma-Bognár L, Gould DP, Fehér B, Kevei E, Nagy F, Turner SM, Hall A, Millar JA (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2:59PubMedCentralPubMedCrossRefGoogle Scholar
  24. McBlain BA, Bernard RL (1987) A new gene affecting the time of flowering and maturity in soybean. J Hered 78:160–162Google Scholar
  25. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130PubMedCentralPubMedGoogle Scholar
  26. Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698PubMedCrossRefGoogle Scholar
  27. Ono N, Ishida K, Yamashino T, Nakanishi H, Sato S, Tabata S, Mizuno T (2010) Genomewide characterization of the light-responsive and clock-controlled output pathways in Lotus japonicus with Special Emphasis of its uniqueness. Plant Cell Physiol 51:1800–1814PubMedCrossRefGoogle Scholar
  28. Samach A, Onouchi H, Gold S, Ditta G, Schwarz-Sommer Z, Yanofsky M, Coupland G (2000) Distinct Roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 228:1613–1616CrossRefGoogle Scholar
  29. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 mb regions of the genome. DNA Res 8:311–318PubMedCrossRefGoogle Scholar
  30. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239PubMedCentralPubMedCrossRefGoogle Scholar
  31. Schmutz J, Cannon BS, Schlueter J, Ma J, Mitros T, Nelson W, Hyten LD, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May DG, Yu Y, Sakurai T, Umezawa T, Bhattacharyya KM, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Jianchang Du, Tian Z, Zhu L, Gill N, Joshi T, Marc Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen TH, Wing AR, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker CR, Jackson AS (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  32. Setoguchi H, Ohba H (1995) Phylogenetic relationships in Crossostylis (Rhizophoraceae) inferred from restriction site variation of chloroplast DNA. J Plant Res 108:87–92CrossRefGoogle Scholar
  33. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120PubMedCrossRefGoogle Scholar
  34. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  35. Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 133:429–441CrossRefGoogle Scholar
  36. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262PubMedCentralPubMedCrossRefGoogle Scholar
  37. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 2:395–407CrossRefGoogle Scholar
  38. Whitelam GC, Devlin PF (1997) Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant, Cell Environ 20:752–758CrossRefGoogle Scholar
  39. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 32:E2155–E2164CrossRefGoogle Scholar
  40. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16:3448–3459PubMedCentralPubMedCrossRefGoogle Scholar
  41. Yamashino T, Yamawaki S, Hagui E, Ueoka-Nakanishi H, Nakamichi N, Ito S, Mizuno T (2013) Clock-Controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus I: verification of the flowering-associated function of an FT homolog. Biosci Biotechnol Biochem 77:747–753PubMedCrossRefGoogle Scholar
  42. Yanoa M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483CrossRefGoogle Scholar
  43. Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 16:520–524Google Scholar
  44. Zhou XE, Wang Y, Reuter M, Mücke M, Krüger DH, Meehan EJ, Chen L (2004) Crystal structure of type IIE restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold. J Mol Biol 335:307–319PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Tomomi Wakabayashi
    • 1
    Email author
  • Hana Oh
    • 2
  • Masayoshi Kawaguchi
    • 2
  • Kyuya Harada
    • 3
  • Shusei Sato
    • 5
  • Hajime Ikeda
    • 4
  • Setoguchi Hiroaki
    • 1
  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  2. 2.National Institute Basic BiologyOkazakiJapan
  3. 3.National Institute of Agrobiological SciencesTsukubaJapan
  4. 4.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
  5. 5.Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations