Journal of Plant Research

, Volume 127, Issue 5, pp 641–650 | Cite as

Detection and characterization of phosphatidylcholine in various strains of the genus Chlamydomonas (Volvocales, Chlorophyceae)

  • Kenta Sakurai
  • Natsumi Mori
  • Naoki SatoEmail author
Regular Paper


The laboratory strains of Chlamydomonas reinhardtii have been reported to contain no phosphatidylcholine (PC), which is considered to be replaced by another zwitterionic lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS). According to the recently published classification, the strains belonged to the subgroup Reinhardtinia. Screening for PC in 13 selected strains of Chlamydomonas in the NIES Algal Collection, which are different in habitats and belong to different phylogenetic subgroups in the genus, revealed the presence of PC in four strains: a strain in the subgroup Polytominia, and three strains in Reinhardtinia. PC was not detected in three other strains of Reinhardtinia analyzed. The presence/absence of PC was not related to the phylogenetic relationship based on 18S rRNA. DGTS was detected in all the strains analyzed. The rare isomer of linolenic acid, 18:3(5,9,12), which has been found in the DGTS of C. reinhardtii, was found in the PC of the two strains and in the DGTS of the five strains. The occurrence of this fatty acid seems limited to a branch of Reinhardtinia. Acquisition and loss of PC in various strains of Chlamydomonas are discussed from the viewpoint of evolution of PC biosynthetic pathway.


Chlamydomonas Delta 5 desaturase Diacylglyceryl-N,N,N-trimethylhomoserine Fatty acid Phosphatidylcholine 



The authors gratefully acknowledge Dr. Masanobu Kawachi, National Institute for Environmental Studies, for sharing the phylogenetic data before publication. They also thank Mr. Takashi Hirashima for help in data processing. This work was supported by a Grant-in-Aid for Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency.

Supplementary material

10265_2014_644_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4811 kb)


  1. Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Plant J 68:387–399. doi: 10.1111/j.1365-313X.2011.04693.x PubMedCrossRefGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi: 10.1139/o59-099 PubMedCrossRefGoogle Scholar
  3. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825. doi: 10.1074/jbc.M111.334052 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Eichenberger W (1976) Lipids of Chlamydomonas reinhardi under different growth conditions. Phytochemistry 15:459–463. doi: 10.1016/S0031-9422(00)88947-5 CrossRefGoogle Scholar
  5. Fischer W, Heinz E, Zeus M (1973) The suitability of lipase from Rhizopus arrhizus delemar for analysis of fatty acid distribution in dihexosyl diglycerides, phospholipids and plant sulfolipids. Hoppe Seyler’s Z Physiol Chem 354:1115–1123PubMedCrossRefGoogle Scholar
  6. Giroud C, Gerber A, Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29:587–595Google Scholar
  7. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406. doi: 10.1146/annurev.arplant. PubMedCrossRefGoogle Scholar
  8. Harris EH (2009) The sexual cycle. In: Harris EH (ed) The Chlamydomonas sourcebook, vol 1, 2nd edn. Elsevier, Amsterdam, pp 119–157Google Scholar
  9. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi: 10.1111/j.1365-313X.2008.03492.x PubMedCrossRefGoogle Scholar
  10. Ichimura T (1971) Sexual cell division and conjugation-papilla formation in sexual reproduction of Closterium strigosum. In: Nishizawa K (ed) Proceedings of the 7th international seaweed symposium. University of Tokyo Press, Tokyo, pp 208–214Google Scholar
  11. Kajikawa M, Yamamoto KT, Kohzu Y, Shoji S, Matsui K, Tanaka Y, Sakai Y, Fukuzawa H (2006) A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by ω13 desaturation in methylotrophic yeast and tobacco. Plant Cell Physiol 47:64–73. doi: 10.1093/pcp/pci224 PubMedCrossRefGoogle Scholar
  12. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer NL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250. doi: 10.1126/science.1143609 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Okaichi T, Nishio S, Imatomi Y (1982) Methodology of toxic plankton-preparation and cultivation of planktons. In: The Japanese Society of Fisheries Science (ed) Toxic phytoplankton occurrence, mode of action, and toxins. Koseisha-Koseikaku, Tokyo, pp 23–34Google Scholar
  14. Riekhof WR, Benning C (2009) Glycerolipid biosynthesis. In: Stern DB (ed) The Chlamydomonas sourcebook, vol 2, 2nd edn. Elsevier, Amsterdam, pp 41–68CrossRefGoogle Scholar
  15. Sakurai K, Moriyama T, Sato N (2014) Detailed identification of fatty acid isomers sheds light on probable precursors of triacylglycerol accumulation in photoautotrophically grown Chlamydomonas reinhardtii. Eukaryot Cell 13:256–266. doi: 10.1128/EC.00280-13 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Sato N (1992) Betain lipids. Bot Mag 105:185–197. doi: 10.1007/BF02489414 CrossRefGoogle Scholar
  17. Sato N (2009) Gclust: trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics 25:599–605. doi: 10.1093/bioinformatics/btp047 PubMedCrossRefGoogle Scholar
  18. Sato N, Furuya M (1985) Distribution of diacylglyceryltrimethylhomoserine and phosphatidylcholine in non-vascular green plants. Plant Sci 38:81–85. doi: 10.1016/0168-9452(85)90134-7 CrossRefGoogle Scholar
  19. Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of plastidic desaturation pathway results in mixed pathway of galactolipid synthesis. Eukaryot Cell 6:1006–1017. doi: 10.1128/EC.00393-06 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115:691–694. doi: 10.1016/j.jbiosc.2012.12.020 PubMedCrossRefGoogle Scholar
  21. Yoon K, Han D, Li Y, Sommerfeld M, Hu O (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24:3708–3724. doi: 10.1105/tpc.112.100701 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Yumoto K, Kasai F, Kawachi M (2013) Taxonomic re-examination of Chlamydomonas strains maintained in the NIES-Collection. Microbiol Cult Collect 29:1–12Google Scholar
  23. Zauner S, Jochum W, Bigorowski T, Benning C (2012) A cytochrome b 5-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii. Eukaryot Cell 11:856–863. doi: 10.1128/EC.00079-12 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.JST, CRESTTokyoJapan

Personalised recommendations