Advertisement

Journal of Plant Research

, Volume 127, Issue 4, pp 469–480 | Cite as

DNA content in South American endemic species of Lathyrus

  • Laura ChalupEmail author
  • Marina Grabiele
  • Viviana Solís Neffa
  • Guillermo Seijo
Regular Paper

Abstract

The genome size was surveyed in 13 Notolathyrus species endemic to South America by flow cytometry and analyzed in an evolutionary and biogeographic context. A DNA content variation of 1.7-fold was registered, and four groups of species with different DNA content were determined. Although, the 2C values were correlated with the total chromosome length and intrachromosomal asymmetry index (A1), the karyotype formula remained almost constant. The conservation of the karyotype formula is in agreement with proportional changes of DNA in the chromosome arms. Species with annual life cycle and shorter generation time had the lowest DNA content and the data suggest that changes in DNA content involved reductions of genome size in the perennial to annual transitions. The variation of 2C values was correlated with precipitation of the coldest quarter and, to some extent, with altitude. Additional correlations with other variables were observed when the species were analyzed separately according to the biogeographic regions. In general, the species with higher DNA content were found in more stable environments. The bulk of evidence suggests that changes on genome size would have been one of the most important mechanisms that drove or accompanied the diversification of Notolathyrus species.

Keywords

Notolathyrus DNA content Flow cytometry Karyotype evolution 

Notes

Acknowledgments

This research was partially supported by grants of Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT-FONCyT-UNNE PICTO 2007-90). Collection trips were partially supported by the Myndel Botanica Foundation. L. Chalup is a Doctoral Fellow of the National Research Council of Argentina (CONICET), J.G. Seijo and V.G. Solís Neffa are members of the Carrera del Investigador Científico of CONICET.

Supplementary material

10265_2014_637_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
10265_2014_637_MOESM2_ESM.doc (57 kb)
Supplementary material 2 (DOC 57 kb)
10265_2014_637_MOESM3_ESM.doc (87 kb)
Supplementary material 3 (DOC 87 kb)

References

  1. Albach DC, Grilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911PubMedCrossRefGoogle Scholar
  2. Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032PubMedCrossRefGoogle Scholar
  3. Ayaz E, Ertekin SA (2008) Karyotype analysis of two species of genus Lathyrus from South-eastern Anatolia, Turkey. Int J Agric Biol 5:569–572Google Scholar
  4. Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117CrossRefGoogle Scholar
  5. Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot 83:687–695CrossRefGoogle Scholar
  6. Battistin A, Fernández A (1994) Karyotypes of four species of South America natives and one cultivated species of Lathyrus L. Caryologia 47:325–330CrossRefGoogle Scholar
  7. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B 181:109–135PubMedCrossRefGoogle Scholar
  8. Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environ Exp Bot 16:93–108CrossRefGoogle Scholar
  9. Bennett MD (1982a) Nucleotypic basis of the spatial ordering of the chromosomes in eukaryotes and implications of the order for genome evolution and phenotypic variation. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, London and New YorkGoogle Scholar
  10. Bennett MD (1982b) The spatial distribution of chromosomes. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. The Royal Botanic Gardens, Kew, pp 71–79Google Scholar
  11. Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200CrossRefGoogle Scholar
  12. Bennett MD (1995) The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics. In: Brandham PE, Bennett MD (eds) Kew chromosome conference IV. The Royal Botanic Gardens, Kew, pp 167–183Google Scholar
  13. Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome 2:89–162. Elsevier Academics, New YorkGoogle Scholar
  14. Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 334:309–345CrossRefGoogle Scholar
  15. Bennett MD, Johnston S, Hodnett GL, Price HJ (2000) Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann Bot 85:351–357CrossRefGoogle Scholar
  16. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36PubMedCrossRefGoogle Scholar
  17. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514PubMedCentralPubMedCrossRefGoogle Scholar
  18. Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132PubMedCrossRefGoogle Scholar
  19. Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW patagonian species of Berberis L. (Berberidaceae). Ann Bot 86:565–573CrossRefGoogle Scholar
  20. Brandham PE, Doherty MJ (1998) Size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot 82:67–73CrossRefGoogle Scholar
  21. Burkart A (1935) Revision of the Lathyrus species from Argentina Republic (in Spanish). R Fac Agron Univ Nac La Plata 8:41–128Google Scholar
  22. Burkart A (1942) New contributions to the systematics of the South American species of Lathyrus (in Spanish). Darwiniana 6:9–29Google Scholar
  23. Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsonis P, Ceccarelli M, Cionini PG (1998) Genome size variation within Dasypyrum villosum: correlation with chromosomal traits, environmental factors and plant phenotypic characteristics and behavior in reproduction. Theor Appl Genet 96:559–567Google Scholar
  24. Chalup L, Grabiele M, Solís Neffa V, Seijo G (2012) Structural karyotypic variability and polyploidy in natural populations of the South American Lathyrus nervosus Lam. (Fabaceae). Plant Syst Evol 298:761–773Google Scholar
  25. Choi WY (1971) Variation in nuclear DNA content in the genus Vicia. Genetics 68:195–211Google Scholar
  26. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedCentralPubMedCrossRefGoogle Scholar
  27. Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2013) InfoStat version 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
  28. Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  29. Doležel J, Greilhuber RJ, Suda J (2007) Estimation of nuclear DNA content in plant using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  30. Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ghasem K, Danesh-Gilevaei M, Aghaalikhani M (2011) Karyotypic and nuclear DNA variations in Lathyrus sativus (Fabaceae). Caryologia 64:42–54CrossRefGoogle Scholar
  32. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101PubMedCrossRefGoogle Scholar
  33. Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34PubMedCrossRefGoogle Scholar
  34. Gregory TR (2005a) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708PubMedCrossRefGoogle Scholar
  35. Gregory TR (2005b) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–143PubMedCrossRefGoogle Scholar
  36. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82(Suppl. A):27–35Google Scholar
  37. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98PubMedCrossRefGoogle Scholar
  38. Grime JP, Mowforth MA (1982) Variation in genome size an ecological interpretation. Nature 299:151–153CrossRefGoogle Scholar
  39. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  40. Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869PubMedCrossRefGoogle Scholar
  41. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235PubMedCrossRefGoogle Scholar
  42. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209PubMedCrossRefGoogle Scholar
  44. Klamt A, Schifino-Wittmann MT (2000) Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of southern Brazil. Genet Mol Biol 23:463–467CrossRefGoogle Scholar
  45. Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76CrossRefGoogle Scholar
  46. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190PubMedCrossRefGoogle Scholar
  47. Krapovickas A, Fuchs AM (1957) Cytological notes in legumes (in Spanish). II. R Investig Agric 11:215–218Google Scholar
  48. Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876CrossRefGoogle Scholar
  49. Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes R Bot Gard Edinb 41:209–244Google Scholar
  50. Levin DA, Funderburg SW (1979) Genome size in angiosperms: temperate versus tropical species. Am Nat 114:784–795Google Scholar
  51. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869PubMedCentralPubMedCrossRefGoogle Scholar
  52. Mac Gillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Funct Ecol 9:320–325CrossRefGoogle Scholar
  53. Moscone EA, Baranyi M, Ebert L, Greilhuber L, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29PubMedCrossRefGoogle Scholar
  54. Nandini AV, Murray BG (1997) Intra and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 125:359–366Google Scholar
  55. Naranjo CA, Ferrari MR, Palermo AM, Poggio L (1998) Karyotype DNA content and meiotic behaviour in five South American species of Vicia (Fabaceae). Ann Bot 82:757–764CrossRefGoogle Scholar
  56. Narayan RKJ (1982) Discontinuous DNA variation in the evolution of plant species: the genus Lathyrus. Evolution 36:877–891CrossRefGoogle Scholar
  57. Narayan RKJ (1998) The role of genomic constraints upon evolutionary changes in genome size and chromosome organization. Ann Bot 82:57–66CrossRefGoogle Scholar
  58. Narayan RKJ, Durrant A (1983) DNA distribution in chromosomes of Lathyrus species. Genetica 61:47–53CrossRefGoogle Scholar
  59. Narayan RKJ, McIntre FK (1989) Chromosomal DNA variation, genomic constraints and recombination in Lathyrus. Genetica 79:45–52CrossRefGoogle Scholar
  60. Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132CrossRefGoogle Scholar
  61. Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–543PubMedCrossRefGoogle Scholar
  62. Petrov DA, Hartl DL (1997) Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene 205:279–289PubMedCrossRefGoogle Scholar
  63. Poggio L, Naranjo CA (1990) DNA content and evolution in higher plants (in Spanish). Acad Nac Ex Fis Nat Buenos Aires Monografía 5:27–37Google Scholar
  64. Poggio L, Burghardt AD, Hunziker JH (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). J Hered 63:321–328CrossRefGoogle Scholar
  65. Poggio L, Rosato M, Chiavarino AM, Naranjo C (1998) Genome size and environmental correlations in Maize (Zea mays ssp. mays, Poaceae). Ann Bot 82:107–115CrossRefGoogle Scholar
  66. Poggio L, Espert SM, Fortunato RH (2008) Evolutive cytogenetics in American legumes (in Spanish). Rodriguesia 59:423–433Google Scholar
  67. Price HJ (1988) Nuclear DNA content variation within angiosperm species. Evol Trends Plants 2:53–60Google Scholar
  68. Price HJ, Bachmann K (1975) DNA content and evolution in the Microseridinae. Am J Bot 62:262–267CrossRefGoogle Scholar
  69. Price HJ, Johnston JS (1996) Influence of light on DNA content of Helianthus annuus Linnaeus. Proc Natl Acad Sci USA 93:11264–11267PubMedCentralPubMedCrossRefGoogle Scholar
  70. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227PubMedCrossRefGoogle Scholar
  71. Rayburn AL, Auger JA (1990) Genome size variation in Zea mays spp mays adapted to different altitudes. Theor Appl Genet 79:470–474PubMedCrossRefGoogle Scholar
  72. Rees H, Hazarika MH (1969) Chromosome evolution in Lathyrus. In: Darlington CD, Lewis KR (eds) Chromosomes today, vol 2. New York, pp 158–165Google Scholar
  73. Rees H, Narayan GH (1988) Chromosome constrains: chiasma frequency and genome size. In: Brandham PE (ed) Kew chromosome conference III. The Royal Botanic Gardens, Kew, pp 231–240Google Scholar
  74. Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321PubMedCrossRefGoogle Scholar
  75. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. In: Sthal A, Luciani JM, Vagner-Capodano AM (eds) Chromosomes today, vol 9. Marseille, pp 61–74Google Scholar
  76. Seal AG (1983) DNA variation in Festuca. Heredity 50:225–236CrossRefGoogle Scholar
  77. Seal AG, Rees H (1982) The distribution of quantitative DNA changes associated with the evolution of diploid Festuceae. Heredity 49:179–190CrossRefGoogle Scholar
  78. Seijo JG (2002) Cytogenetic studies in South American species of the genus Lathyrus, section Notolathyrus (Leguminosae) (in Spanish). PhD thesis, National University of Córdoba, ArgentinaGoogle Scholar
  79. Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Am J Bot 90:980–987PubMedCrossRefGoogle Scholar
  80. Seijo JG, Solís Neffa VG (2006) Cytogenetic studies in the rare South American Lathyrus hasslerianus Burk. Cytologia 71:11–19CrossRefGoogle Scholar
  81. Sims LE, Price HJ (1985) Nuclear DNA content variation in Helianthus annuus (Asteraceae). Am J Bot 72:1213–1219CrossRefGoogle Scholar
  82. Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191CrossRefGoogle Scholar
  83. Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Am Nat 91:337–354CrossRefGoogle Scholar
  84. Temsch EM, Greilhuber J (2000) Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43:449–451PubMedCrossRefGoogle Scholar
  85. Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830PubMedCrossRefGoogle Scholar
  86. Thiers B (2013) Index herbariorum: a global directory of public herbaria and associated staff. Botanical Garden’s Virtual Herbarium, New York. http://sweetgum.nybg.org/ih
  87. Wakamiya I, Newton R, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80:1235–1241CrossRefGoogle Scholar
  88. Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47PubMedCrossRefGoogle Scholar
  89. Wicker T, Guyot R, Yahiaoui N, Keller B (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63PubMedCentralPubMedCrossRefGoogle Scholar
  90. Yamamoto K, Fujiwara T, Blumenreich ID (1984) Karyotypes and morphological characteristics of some species in the genus Lathyrus L. J Breed 34:273–284CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Laura Chalup
    • 1
    Email author
  • Marina Grabiele
    • 1
  • Viviana Solís Neffa
    • 1
    • 2
  • Guillermo Seijo
    • 1
    • 2
  1. 1.Instituto de Botánica del Nordeste (UNNE, Facultad de Ciencias Agrarias -CONICET)CorrientesArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE)CorrientesArgentina

Personalised recommendations