Journal of Plant Research

, Volume 127, Issue 2, pp 287–297 | Cite as

Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers

  • Andi Fadly Yahya
  • Jung Oh Hyun
  • Jae Ho Lee
  • Yong Yul Kim
  • Kyung Mi Lee
  • Kyung Nak Hong
  • Seung-Chul Kim
Regular Paper


Genetic variations within and among Rhizophora apiculata populations in the Greater Sunda Islands of Indonesia were studied using microsatellite markers. The study found 38 alleles on five loci in 15 populations. The observed (H o) and expected (H e) heterozygosity values are 0.338 and 0.378, respectively. Inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (F ST = 0.381) was similar to other mangrove species. The genetic diversity of R. apiculata populations along the coastline inside the archipelago (e.g., Buleleng, Donggala, Mamuju, and Takalar) was higher than those of population along the coastline outside the archipelago, especially northern Sumatra populations (i.e., Langkat, Tapanuli Tengah, Dumai, and Padang). The isolation by distances and sea currents directions as well as their connectivity might affect the gene flow and genetic exchange. The more isolated with fewer connections by sea currents, the smaller gene flow and genetic exchange observed between populations. The higher genetic exchange, on the contrary, occurred when population location was closer to the meeting point of the sea currents. The study also showed that the patterns of sea current movement seemed to have influence genetic clustering of populations which fell into three main groups (Sunda Shelf Mangroves) and one isolated population (New Guinea Mangroves).


Genetic structure Microsatellite Rhizophora apiculata Indo-West Pacific stilt mangrove Greater Sunda Islands Indonesia 



The authors wish to thank Mrs. Yuni Wiratini (Mangrove Information Center—Bali, Indonesia), Mr. Arief Mahmud (Mangrove Management Center—Medan, Indonesia), and Mr. Taufik Herdian Nugraha for their help during sampling process. Also, to Dr. Lee Hong Tnah and Dr. Chai Ting Lee (Forest Research Institute Malaysia—Malaysia) for their help on the statistical analysis.


  1. Arbeláez-Cortes E, Castillo-Cárdenas MF, Toro-Perea N, Cárdenas-Henao H (2007) Genetic structure of the red mangrove (Rhizophora mangle L.) on the Colombian Pacific detected by microsatellite molecular markers. Hydrobiologia 583:321–330CrossRefGoogle Scholar
  2. Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455PubMedCrossRefGoogle Scholar
  3. Bunt JS (1982) Studies of mangrove litter fall in tropical Australia. In: Clough BF (ed) Mangrove ecosystems in Australia: structure, function and management. Australian. National University Press, Canberra, pp 223–238Google Scholar
  4. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623PubMedCrossRefGoogle Scholar
  5. Cerón-Souza I, Toro-Perea N, Cárdenas-Henao H (2005) Population genetic structure of neotropical mangrove species on the Colombian Pacific Coast: Avicennia germinans (Avicenniaceae). Biotropica 37:258–265CrossRefGoogle Scholar
  6. Cerón-Souza I, Bermingham E, McMillan WO, Jones FA (2012) Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evol Biol 12:205PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen X, Lin P, Lin Y (1996) Mating system and spontaneous mutation rates for chlorophyll deficiency in populations of the mangrove Kandelia candel. Hereditas 125:47–52Google Scholar
  8. Dodd RS, Afzal-Rafii Z, Kashani N, Budrick J (2002) Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol Ecol 11:1327–1338PubMedCrossRefGoogle Scholar
  9. Drexler JZ (2001) Maximum Longevities of Rhizophora apiculata and R. mucronata propagules. Pac Sci 55:17–22CrossRefGoogle Scholar
  10. Duke NC (1995) Genetic diversity, distributional patterns and rafting continents-more thoughts on the evolution of mangroves. Hydrobiologia 295:161–181CrossRefGoogle Scholar
  11. Duke NC (2006) Australia’s Mangroves. The authoritative guide to Australia’s mangrove plants. University of Queensland, BrisbaneGoogle Scholar
  12. Duke NC, Bunt JS, Williams WT (1984) Observations on the floral and vegetative phenologies of north-eastern Australian mangroves. Aust J Bot 32:87–99CrossRefGoogle Scholar
  13. Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7:27–47CrossRefGoogle Scholar
  14. Duke NC, Lo EYY, Sun M (2002) Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees 16:65–79CrossRefGoogle Scholar
  15. Earl DA, vonHoldt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conservation Genet Resour 4:359–361CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  17. Ge X, Sun M (2001) Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetlands Ecol Manage 9:203–209CrossRefGoogle Scholar
  18. Geng Q, Lian C, Goto S, Tao J, Kimura M, Islam M, Hogetsu T (2008) Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17:4724–4739PubMedCrossRefGoogle Scholar
  19. Giang LH, Hong PN, Tuan MS, Harada K (2003) Genetic variation of Avicennia marina (Forsk.) Vierh. (Avicenniaceae) in Vietnam revealed by microsatellites and AFLP markers. Genes Genet Syst 78:399–407CrossRefGoogle Scholar
  20. Giesen W, Wulffraat S, Zieren M, Scholten L (2006) Mangrove guidebook for Southeast Asia. RAP Publication 2006/07. FAO Regional Office for Asia and the Pacific and Wetlands International, BangkokGoogle Scholar
  21. Hamzah (2005) Studi keragaman genetik dan pendugaan derajat perkawinan silang berdasarkan analisis isozim serta pengujian provenansi jenis bakau (Rhizophora mucronata Lamk.). PhD Dissertation, Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor (in Indonesian)Google Scholar
  22. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  23. Hou D (1992) Rhizophora mucronata Poiret. In: Wulijarni-Soetjipto N, Lemmens RHMJ (eds) Plant resources of south-east Asia no 3. Dye and tannin-producing plants. Backhuys Publishers, Leiden, pp 110–112Google Scholar
  24. Hou D, Chan HT (1997) Rhizophora apiculata Blume. In: Faridah Hanum I, van der Maesen LJG (eds) Plant resources of south-east Asia No 11. Auxiliary plants. Backhuys Publishers, Leiden, pp 220–223Google Scholar
  25. Huang Y, Tan F, Su G, Deng S, He H, Shi S (2008) Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica 133:47–56PubMedCrossRefGoogle Scholar
  26. Inomata N, Wang X, Changtragoon S, Szmidt AE (2009) Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes Genet Syst 84:277–286PubMedCrossRefGoogle Scholar
  27. Islam MS, Lian CL, Kameyama N, Wu B, Hogetsu T (2004) Development of microsatellite markers in Rhizophora stylosa using a dual-suppression-polymerase chain reaction technique. Mol Ecol Notes 4:110–112CrossRefGoogle Scholar
  28. Islam MS, Lian CL, Kameyama N, Wu B, Hogetsu T (2006a) Development and characterization of ten new microsatellite markers in a mangrove tree species Bruguiera gymnorrhiza (L.). Mol Ecol Notes 6:30–32CrossRefGoogle Scholar
  29. Islam MS, Tao JM, Geng QF, Lian CL, Hogetsu T (2006b) Isolation and characterization of eight compound microsatellite markers in a mangrove tree Kandelia candel (L.) Druce. Mol Ecol Notes 6:1111–1113CrossRefGoogle Scholar
  30. Lefort F, Echt C, Streiff R, Vendramin GG (1999) Microsatellite sequences: a new generation of molecular markers for forest genetics. For Genet 6:15–20Google Scholar
  31. Liu K, Muse SV (2005) Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  32. Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and applications. Wiley, OxfordGoogle Scholar
  33. Maguire TL, Saenger P, Baverstock P, Henry R (2000a) Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Mol Ecol 9:1853–1862PubMedCrossRefGoogle Scholar
  34. Maguire TL, Edwards KJ, Saenger P, Henry R (2000b) Characterization and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor Appl Genet 101:279–285CrossRefGoogle Scholar
  35. Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104:388–398PubMedCrossRefGoogle Scholar
  36. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  37. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170PubMedCrossRefGoogle Scholar
  38. Nettel A, Dodd RS (2007) Drifting propagules and receding swamps: genetic footprints of mangroves recolonization and dispersal along tropical coasts. Evolution 61:958–971PubMedCrossRefGoogle Scholar
  39. Nettel A, Rafii F, Dodd RS (2005) Characterization of microsatellite markers for the mangrove tree Avicennia germinans L. (Avicenniaceae). Mol Ecol Notes 5:103–105CrossRefGoogle Scholar
  40. Olson DM, Dinerstein E (2002) The Global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224CrossRefGoogle Scholar
  41. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  42. Pil MW, Boeger MRT, Muschner VC, Pie MR, Ostrensky A, Boeger WA (2011) Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Amer J Bot 98:1031–1039CrossRefGoogle Scholar
  43. Primack RB, Tomlinson PB (1980) Variation in tropical forest breeding systems. Biotropica 12:229–231CrossRefGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  45. Ricklefs Re, Latham RE (1993) Global patterns of diversity in mangrove floras. In: Ricklefs RE, Schulter D (eds) Species diversity in ecoogical communities. University of Chicago Press, Chicago, pp 215–229Google Scholar
  46. Rosero-Galindo C, Gaitan-Solis E, Cardenas-Henao H, Tohme J, Toro-Perea N (2002) Polymorphic microsatellites in a mangrove species, Rhizophora mangle L. (Rhizophoraceae). Mol Ecol Notes 2:281–283CrossRefGoogle Scholar
  47. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  48. Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Mar Freshw Res 49:277–286CrossRefGoogle Scholar
  49. Su G-H, Huang Y-L, Tan F-X, Ni X-W, Tang T, Shi S-H (2006) Genetic variation in Lumnitzera racemosa, a mangrove species from the Indo-West Pacific. Aquat Bot 84:341–346CrossRefGoogle Scholar
  50. Sugaya T, Takeuchi T, Yoshimaru H, Katsuta M (2002) Development and polymorphism of simple sequence repeat DNA markers for Kandelia candel (L.) Druce. Mol Ecol Notes 2:65–66CrossRefGoogle Scholar
  51. Sugaya T, Yoshimaru H, Takeuchi T, Katsuta M, Fujimoto K, Changtragoon S (2003) Development and polymorphism of simple sequence repeat DNA markers for Bruguiera gymnorrhiza (L.) Lamk. Mol Ecol Notes 3:88–90CrossRefGoogle Scholar
  52. Takayama K, Tamura M, Tateishi Y (2008) Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv Genet 9:1323–1325CrossRefGoogle Scholar
  53. Takayama K, Tamura M, Tateishi Y, Webb EL, Kajita T (2013) Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Amer J Bot 100:1191–1201CrossRefGoogle Scholar
  54. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  55. Tan F, Huang Y, Ge X, Su G, Ni X, Shi S (2005) Population genetic structure and conservation implications of Ceriops decandra in Malay Peninsula and North Australia. Aquat Bot 81:175–188CrossRefGoogle Scholar
  56. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  57. Triest L (2008) Molecular ecoogy and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: a review. Aquat Bot 89:138–154CrossRefGoogle Scholar
  58. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  59. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  60. Voris HK (2000) Maps of Pleistocene sea levels in South East Asia: shorelines, river systems, time durations. J Biogeogr 27:1153–1167CrossRefGoogle Scholar
  61. Wikramanayake E, Dinerstein E, Loucks CJ, Olson DM, Morrison J, Lamoreux J, McKnight M, Hedao P (2002) Terrestrial Ecoregions of the Indo-Pacific: a Conservation Assessment. Island Press, WashingtonGoogle Scholar
  62. Woodroffe CD, Grindrod J (1991) Mangrove biogeography: the role of Quaternary environmental and sea-level change. J Biogeogr 18:479–492CrossRefGoogle Scholar
  63. Wyrtki K (1961) Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961. Naga Report Volume 2. The University of California, Scripps Institutions of Oceanography, La Jolla, p 195Google Scholar
  64. Yeh FC, Yang RC, Boyle T (1999) PopGene Version 1.32, microsoft windows base software for population genetic analysis: a quick user’s guide. Center for International Forestry Research, University of Alberta, AlbertaGoogle Scholar
  65. Zolgharnein H, Kamyab M, Keyvanshokooh S, Ghasemi A, Nabavi SMB (2010) Genetic diversity of Avicennia marina (Forsk.) Vierh. populations in the persian gulf by microsatellite markers. J Fish Aquat Sci 5:223–229CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Andi Fadly Yahya
    • 1
  • Jung Oh Hyun
    • 1
  • Jae Ho Lee
    • 2
  • Yong Yul Kim
    • 3
  • Kyung Mi Lee
    • 3
  • Kyung Nak Hong
    • 4
  • Seung-Chul Kim
    • 5
  1. 1.Department of Forest Sciences and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Natural Landscape Division, Nature and Ecology Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
  3. 3.Korea Forest Seed and Variety Center, Korea Forest ServiceChungjuRepublic of Korea
  4. 4.Laboratory of Forest Molecular Genetics, Division of Forest Genetic ResourcesKorea Forest Research InstituteSuwonRepublic of Korea
  5. 5.Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations