Journal of Plant Research

, Volume 127, Issue 2, pp 233–240 | Cite as

New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov

  • Harufumi Nishida
  • Kathleen B. Pigg
  • Kensuke Kudo
  • John F. Rigby
JPR Symposium Palaeobotany:Old but new stories on plant diversity

Abstract

Ediea homevalensis H. Nishida, Kudo, Pigg & Rigby gen. et sp. nov. is proposed for permineralized pollen-bearing structures from the Late Permian Homevale Station locality of the Bowen Basin, Queensland, Australia. The taxon represents unisexual fertile shoots bearing helically arranged leaves on a central axis. The more apical leaves are fertile microsporophylls bearing a pair of multi-branched stalks on their adaxial surfaces that each supports a cluster of terminally borne pollen sacs. Proximal to the fertile leaves there are several rows of sterile scale-like leaves. The pollen sacs (microsporangia) have thickened and dark, striate walls that are typical of the Arberiella type found in most pollen organs presumed to be of glossopterid affinity. An examination of pollen organs at several developmental stages, including those containing in situ pollen of the Protohaploxypinus type, provides the basis for a detailed analysis of these types of structures, which bear similarities to both compression/impression Eretmonia-type glossopterid microsporangiate organs and permineralized Eretmonia macloughlinii from Antarctica. These fossils demonstrate that at least some Late Permian pollen organs were simple microsporophyll-bearing shoot systems and not borne directly on Glossopteris leaves.

Keywords

Australia Bowen basin Eretmonia Glossopteris Gondwana Permian 

References

  1. Basinger JF, Rothwell GW (1977) Anatomically preserved plants from the middle Eocene (Allenby formation) of British Columbia. Can J Bot 55:1984–1990CrossRefGoogle Scholar
  2. Gould RE (1970) Palaeosmunda, a new genus of siphonostelic osmundaceous trunks from the Upper Permian of Queensland. Palaeontology 13:10–28Google Scholar
  3. Gould RE (1975) A preliminary report on petrified axes of Vertebraria from the Permian of eastern Australia. In: Campbell KSW (ed) Gondwana symposium, Canberra, Australia, 1973. Australian National University Press, Canberra, pp 109–115Google Scholar
  4. Gould RE, Delevoryas T (1977) The biology of Glossopteris: evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa 1:387–399CrossRefGoogle Scholar
  5. Mcneill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema JH, Turland NJ, International Code of Nomenclature for algae, fungi and plants Melbourne Code (eds) (2012) Regnum Vegetabile. Koeltz Scientific Books, Königstein, p 154Google Scholar
  6. Joy KW, Willis AJ, Lacey WS (1956) A rapid cellulose acetate peel method in palaeobotany. Ann Bot 20:635–637Google Scholar
  7. Klavins SD, Taylor EL, Krings M, Tylor TN (2001) An unusual, structurally preserved ovule from the Permian of Antarctica. Rev Palaeobot Palynol 115:107–117PubMedCrossRefGoogle Scholar
  8. Lindström S, McLoughlin S, Drinnan AN (1997) Intraspecific variation of taeniate biscaccate pollen within Permian glossopterid sporangia, from the Prince Charles Mountains, Antarctica. Int J Plant Sci 158:673–684CrossRefGoogle Scholar
  9. McLoughlin S (1990a) Palaeobotany and palaeoenvironments of Permian strata, Bowen Basin, Queensland. PhD thesis. University of Queensland, St LuciaGoogle Scholar
  10. McLoughlin S (1990b) Some Permian glossopterid leaves and fructifications from the Bowen Basin. Rev Palaeobot Palynol 62:11–40CrossRefGoogle Scholar
  11. McLoughlin S (1992) Late Permian plant megafossils from the Bowen Basin, Queensland, Australia, Part 1. Palaeontographica 228B:105–149Google Scholar
  12. McLoughlin S, Drinnan AN (1996) Anatomically preserved Noeggerathiopsis leaves from east Antarctica. Rev Palaeobot Palynol 92:207–227CrossRefGoogle Scholar
  13. McManus HA, Taylor EL, Taylor TN, Collinson JW (2002) A petrified Glossopteris flora from Collinson Ridge, central Transarctic Mountains: late Permian or early Triassic? Rev Palaeobot Palyno 120:233–246CrossRefGoogle Scholar
  14. Neish PG, Drinnan AN, Cantrill DJ (1993) Structure and ontogeny of Vertebraria roots from silicified Permian sediments in East Antarctica. Rev Palaeobot Palynol 79:221–244CrossRefGoogle Scholar
  15. Nishida H, Kudo K, Pigg KB, Rigby JF (2002) New characters of reproductive organs of Glossopteris in relation to its phylogeny. The 6th Conference of International Organization of Paleobotany (IOPC-VI) Abstracts pp 95Google Scholar
  16. Nishida H, Pigg KB, Rigby JF (2003) Swimming sperm in an extinct Gondwanan plant. Nature 422:396–397PubMedCrossRefGoogle Scholar
  17. Nishida H, Pigg KB, Kudo K, Rigby J (2004) Zooidogamy in the late Permian genus Glossopteris. J Plant Res 117:323–328PubMedCrossRefGoogle Scholar
  18. Nishida H, Pigg KB, Kudo K, Rigby J (2007) New evidence of reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. I. Ovulate organ Homevaleia gen nov. J Plant Res 120:539–549PubMedCrossRefGoogle Scholar
  19. Pigg KB (1990) Anatomically preserved Glossopteris foliage from the central Transantarctic Mountains. Rev Palaeobot Palyno 66:105–127CrossRefGoogle Scholar
  20. Pigg KB, McLoughlin S (1997) Anatomically preserved Glossopteris leaves from the Bowen and Sydney basins, Australia. Rev Palaeobot Palyno 97:339–359CrossRefGoogle Scholar
  21. Pigg KB, Nishida H (2006) The significance of silicified plant remains to the understanding of Glossopteris-bearing plants. J Torrey Bot Soc 143:46–61CrossRefGoogle Scholar
  22. Pigg KB, Taylor TN (1993) Anatomically preserved Glossopteris stems with attached leaves from the central Transantarctic Mountains, Antarctica. Amer J Bot 80:500–516CrossRefGoogle Scholar
  23. Ryberg PE (2010) Lakkosia kerasata gen. et sp. nov., a permineralized megasporangiate Glossopterid structure from the Central Transantarctic Mountains, Antarctica. Int J Plant Sci 171(3):332–344. doi:10.1086/650156 CrossRefGoogle Scholar
  24. Ryberg PE, Taylor EL (2013) Lonchiphyllum aplospermum gen. et. sp. nov.: an anatomically preserved glossopterid megasporophyll from the Upper Permian of Skaar Ridge, Transantarctic Mountains, Antarctica. Int J Plant Sci 174:396–405. doi:10.1086/668222 CrossRefGoogle Scholar
  25. Ryberg PE, Taylor EL, Taylor TN (2012a) The first permineralized microsporophyll of the glossopteridales: Eretmonia macloughlinii sp. nov. Int J Plant Sci 173:812–822. doi:10.1086/666667 CrossRefGoogle Scholar
  26. Ryberg PE, Taylor EL, Taylor TN (2012b) Antarctic glossopterid diversity on a local scale: the presence of multiple megasporophyll genera, Upper Permian, Mt. Achernar, Transantarctic Mountains, Antarctica. Amer J Bot 99:1531–1540. doi:10.3732/ajb.1200142 CrossRefGoogle Scholar
  27. Schopf JM (1970) Petrified peat from a Permian coal bed on Antarctica. Science 169:274–277PubMedCrossRefGoogle Scholar
  28. Schopf JM (1976) Morphologic interpretation of fertile structures in glossopterid gymnosperms. Rev Palaeobot Palynol 21:25–64CrossRefGoogle Scholar
  29. Smoot EL, Taylor TN (1987) Evidence of simple polyembryony in Permian seeds from Antarctica. Amer J bot 73:1079–1081CrossRefGoogle Scholar
  30. Taylor TN, Taylor EL (1987) Structurally preserved fossil plants from Antarctica III. Permian seeds. Amer J Bot 74:904–913CrossRefGoogle Scholar
  31. Taylor TN, Taylor EL, Isbell JL (1989) Glossopterid reproductive organs from Mount Achernar, Antarctica. Antarct J US 24:28–30Google Scholar
  32. Taylor TN, Taylor EL, Ryberg PE (2007) Ovule-bearing reproductive organs of the glossopterid seed ferns from the Late Permian of the Beardmore Glacier region, Antarctica. In: Cooper AK, Raymond CR (eds) Antarctica: a keystone in a changing world. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. US Geol Surv Open-File Rep 2007–1047, Short Res Pap 082. 4 pp. doi: 10.3133/of2007-1047.srp082

Copyright information

© The Botanical Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Harufumi Nishida
    • 1
    • 2
  • Kathleen B. Pigg
    • 3
  • Kensuke Kudo
    • 4
  • John F. Rigby
    • 5
  1. 1.Faculty of Science and Engineering, Department of Biological SciencesChuo UniversityTokyoJapan
  2. 2.Graduate School of ScienceUniversity of TokyoTokyoJapan
  3. 3.School of Life SciencesArizona State UniversityTempeUSA
  4. 4.IchiharaJapan
  5. 5.School of Earth, Environment and Biological SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations