Journal of Plant Research

, Volume 126, Issue 3, pp 415–425 | Cite as

Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses

  • Chuan Wu
  • Chunquan Ma
  • Yu Pan
  • Shilong Gong
  • Chenxi Zhao
  • Sixue Chen
  • Haiying Li
Regular Paper


Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.


Sugar beet M14 BvM14-glyoxalase I Methylglyoxal detoxification Stress tolerance 



This research was supported by the National Science Foundation of China (Project 31071473: Studies on the function of the BvM14-cystatin in sugar beet M14 lines, and Project 30871566: Studies on floral organ-specific expressed proteins in sugar beet M14 lines), and the Graduate Innovation Project of Heilongjiang Province. The paper represents serial 006 from our innovation team at the Heilongjiang University (Hdtd2010-05).

Supplementary material

10265_2012_532_MOESM1_ESM.pdf (85 kb)
Supplementary material 1 (PDF 85 kb)


  1. Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedCrossRefGoogle Scholar
  2. Baker CJ, Mock MM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult 39:7–12CrossRefGoogle Scholar
  3. Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Chakravarty TN, Sopory SK (1998) Blue light stimulation of cell proliferation and glyoxalase I activity in callus cultures of Amaranthus paniculatus. Plant Sci 132:63–69CrossRefGoogle Scholar
  5. Chaplen F, Fahl W, Cameron D (1998) Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc Natl Acad Sci 95:5533–5538PubMedCrossRefGoogle Scholar
  6. Desel C, Jansen R, Dedong G, Schmidt T (2002) Painting of parental chromatin in Beta hybrids by multi-colour fluorescent in situ hybridization. Ann Bot 89:171–181PubMedCrossRefGoogle Scholar
  7. Deswal R, Sopory SK (1999) Glyoxalase I from Brassica juncea is a calmodulin stimulated protein. Biochim Biophys Acta 1450:460–467PubMedCrossRefGoogle Scholar
  8. Deswal R, Chakaravarty TN, Sopory SK (1993) The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem Soc Trans 21:527–530PubMedGoogle Scholar
  9. Espartero J, Sánchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233PubMedCrossRefGoogle Scholar
  10. Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196PubMedGoogle Scholar
  11. Gao D, Guo D, Jung C (2001) Monosomic addition lines of Beta corolliflora Zoss in sugar beet: cytological and molecular-marker analysis. Theor Appl Genet 103:240–247CrossRefGoogle Scholar
  12. Ge Y, He G, Wang Z, Guo D, Qin R, Li R (2007) GISH and BAC FISH study of apomictic Beta M14. Sci China C Life Sci 50:242–250PubMedCrossRefGoogle Scholar
  13. Ghoul am C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50CrossRefGoogle Scholar
  14. Guo D, Liu L, Cang C, Li H, Han X, Tang Y, Wang G (2001a) Analysis of the transmission frequency of a monosomic addition line of Beta corolliflora Zoss in sugar beet. J Heilonjiang Univ 18:102–107Google Scholar
  15. Guo D, Lu L, Kang C (2001b) Propagation and transmitting characteristics of apomictic monosomic additions Beta M14. J Heilonjiang Univ 18:104–107Google Scholar
  16. Hameed A, FarooQ S, Iqbal N, Arshad R (2004) Influence of exogenous application of hydrogen peroxide on root and seedling growth on wheat (Triticum aestivum L.). Inter J Agr Biol 6:366–369Google Scholar
  17. Han W, Ding P, Xu M, Wang L, Rui M, Shi S, Liu Y, Zheng Y, Chen Y, Yang T, Ma D (2003) Identification of eight genes encoding chemokine-like factor superfamily members 1–8(CKLFSF1–8) by in silico cloning and experimental validation. Genomics 81:609–617PubMedCrossRefGoogle Scholar
  18. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  19. Inoue Y, Maeta K, Nomura W (2011) Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 22:278–284PubMedCrossRefGoogle Scholar
  20. Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271PubMedCrossRefGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  22. Li Y, Cohenford MA, Dutta U, Dain JA (2008) The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2′-deoxyguanosine. Anal Bioanal Chem 390:679–688PubMedCrossRefGoogle Scholar
  23. Li H, Cao H, Wang Y, Qiu P, Chun Ma, Si C (2009) Proteomic analysis of sugar beet apomictic monosomic addition line M14. J Proteomics 73:297–308PubMedCrossRefGoogle Scholar
  24. Lin F, Xu J, Shi J, Li H, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGLY I in wheat (Triticum aestivum L.). Mol Biol Rep 37:729–735PubMedCrossRefGoogle Scholar
  25. Maeta K, Izawa S, Inoue Y (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260PubMedGoogle Scholar
  26. Martins AM, Cordeiro CA, Ponces Freire AM (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44PubMedCrossRefGoogle Scholar
  27. McGuffin LJ, Bryson K, Jones DT (2000) The PSI-PRED protein structure prediction server. Bioinformatics 16:404–405PubMedCrossRefGoogle Scholar
  28. Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stress. Funct Integr Genomics 11:293–305PubMedCrossRefGoogle Scholar
  29. Narimanov AA, Korystov YN (1997) Low doses of ionizing radiation and hydrogen peroxide stimulate plant growth. Biologia (Bratislava) 52:121–124Google Scholar
  30. Norton SJ, Talesa V, Yuan WJ, Principato GB (1990) Glyoxalase I and glyoxalase II from Aloe vera: purification, characterization and comparison with animal glyoxalases. Biochem Int 22:411–418PubMedCrossRefGoogle Scholar
  31. Paulus C, Köllner B, Jacobsen HJ (1993) Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta 189:561–566PubMedCrossRefGoogle Scholar
  32. Rajabi A, Ranji Z, Griffiths Z, Ober ES (2007) A preliminary study on genotypic differences in transcript abundance of drought-responsive genes in sugar beet. Pak J Biol Sci 10:3599–3605PubMedCrossRefGoogle Scholar
  33. Ramaswamy O, Pal S, Guha-Mukherjee S, Sopory SK (1983) Presence of glyoxalase I in pea. Biochem Int 7:307–318Google Scholar
  34. Ramaswamy O, Pal S, Guha-Mukherjee S, Sopory SK (1984) Correlation of glyoxalase I activity with cell proliferation in Datura callus culture. Plant Cell Rep 3:121–124CrossRefGoogle Scholar
  35. Ray S, Dutta S, Halder J, Ray M1 (1994) Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 303:69–72Google Scholar
  36. Rhee H, Murata K, Kimura A (1987) Molecular cloning of the Pseudomonas putida glyoxalase I gene in Escherichia coli. Biochem Biophys Res Commun 147:831–838PubMedCrossRefGoogle Scholar
  37. Schafer HJ, Haag-kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial g-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97PubMedCrossRefGoogle Scholar
  38. Sethi U, Basu A, Guha-Mukherjee S (1988) Control of cell proliferation and differentiation by regulating polyamine biosynthesis in cultures of Brassica and its correlation with glyoxalase activity. Plant Sci 56:167–175CrossRefGoogle Scholar
  39. Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci 104(5):6460–6465PubMedCrossRefGoogle Scholar
  40. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci 100:14672–14677PubMedCrossRefGoogle Scholar
  41. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623PubMedCrossRefGoogle Scholar
  42. Speer O, Morkunaite-Haimi S, Liobikas J, Franck M, Hensbo L, Linder MD, Kinnunen PK, Wallimann T, Eriksson O (2003) Rapid suppression of mitochondrial permeability transition by methylglyoxal. Role of reversible arginine modification. J Biol Chem 278:34757–34763PubMedCrossRefGoogle Scholar
  43. Suttisansanee U, Honek JF (2011) Bacterial glyoxalase enzymes. Semin Cell Dev Biol 22:285–292PubMedCrossRefGoogle Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994a) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1994b) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  46. Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11PubMedGoogle Scholar
  47. Thornalley PJ (2003) Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1349PubMedCrossRefGoogle Scholar
  48. Tuomainen M, Ahonen V, Kärenlampi SO, Schat H, Paasela T, Svanys A, Tuohimetsä S, Peräniemi S, Tervahauta A (2003) Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. Planta 233:1173–1184CrossRefGoogle Scholar
  49. Umea M, Hara C, Matsubayashi Y, Li HH, Liu Q, Tadokoro F, Aotsuka S, Uchimiya H (1994) Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP generating pathways. Plant Mol Biol 25:469–478CrossRefGoogle Scholar
  50. Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307PubMedCrossRefGoogle Scholar
  51. Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395Google Scholar
  52. Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67PubMedCrossRefGoogle Scholar
  53. Yang L, Ma C, Wang L, Chen S, Li H (2012) Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J Plant Physiol 169:839–850PubMedCrossRefGoogle Scholar
  54. Zhou S, Sauvé R, Thannhauser TW (2009) Proteome changes induced by aluminum stress in tomato roots. J Exp Bot 60:1849–1857PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2012

Authors and Affiliations

  • Chuan Wu
    • 1
  • Chunquan Ma
    • 1
  • Yu Pan
    • 1
  • Shilong Gong
    • 1
  • Chenxi Zhao
    • 1
  • Sixue Chen
    • 1
    • 2
  • Haiying Li
    • 1
    • 3
  1. 1.Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life SciencesHeilongjiang UniversityHarbinChina
  2. 2.Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleUSA
  3. 3.Engineering Research Center of Agricultural Microbiology TechnologyMinistry of Education Heilongjiang UniversityHarbinChina

Personalised recommendations