Journal of Plant Research

, Volume 125, Issue 5, pp 679–692 | Cite as

The Arabidopsis thaliana SET-domain-containing protein ASHH1/SDG26 interacts with itself and with distinct histone lysine methyltransferases

  • María del Pilar Valencia-Morales
  • José Alberto Camas-Reyes
  • José Luis Cabrera-Ponce
  • Raúl Alvarez-VenegasEmail author
Regular Paper


Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of homeotic genes and have central roles in cell proliferation, growth and development. In animals, PcG and trxG proteins form higher order protein complexes that contain SET domain proteins with histone methyltransferase activity, and are responsible for the different types of lysine methylation at the N-terminal tails of the core histone proteins. However, whether H3K4 methyltransferase complexes exist in Arabidopsis thaliana remains unknown. Here, we make use of the yeast two-hybrid system and the bimolecular fluorescence complementation assay to provide evidence for the self-association of the Arabidopsis thaliana SET-domain-containing protein SET DOMAIN GROUP 26 (SDG26), also known as ABSENT, SMALL, OR HOMEOTIC DISCS 1 HOMOLOG 1 (ASHH1). In addition, we show that the ASHH1 protein associates with SET-domain-containing sequences from two distinct histone lysine methyltransferases, the ARABIDOPSIS HOMOLOG OF TRITHORAX-1 (ATX1) and ASHH2 proteins. Furthermore, after screening a cDNA library we found that ASHH1 interacts with two proteins from the heat shock protein 40 kDa (Hsp40/DnaJ) superfamily, thus connecting the epigenetic network with a system sensing external cues. Our findings suggest that trxG complexes in Arabidopsis thaliana could involve different sets of histone lysine methyltransferases, and that these complexes may be engaged in multiple developmental processes in Arabidopsis.


ASHH1 Arabidopsis Trithorax-group SET-domain Histone methyltransferases 



We thank Laura Aguilar-Henonin and Plinio Guzmán-Villate for their helpful advice during the Y2HS assays. These studies were supported by CONACYT, grant CB-2006/55028 to RA-V.

Supplementary material (1.3 mb)
Supplementary material 1 (DOCX 1,372 kb)
10265_2012_485_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)
10265_2012_485_MOESM3_ESM.doc (32 kb)
Supplementary material 3 (DOC 32 kb)
10265_2012_485_MOESM4_ESM.docx (23 kb)
Supplementary material 4 (DOCX 22 kb)


  1. Alvarez-Venegas R, Avramova Z (2001) Two Arabidopsis homologs of the Drosophila trithorax genes; identification of a new structural domain. Gene 271:215–221PubMedCrossRefGoogle Scholar
  2. Alvarez-Venegas R, Avramova Z (2005) Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res 33:5199–5207PubMedCrossRefGoogle Scholar
  3. Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637PubMedCrossRefGoogle Scholar
  4. Aquea F, Vega A, Timmermann T, Poupin MJ, Arce-Johnson P (2011) Genome-wide analysis of the SET DOMAIN GROUP family in Grapevine. Plant Cell Rep. doi: 10.1007/s00299-011-1015-0 PubMedGoogle Scholar
  5. Arabidopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607. doi: 10.1126/science.1203877 CrossRefGoogle Scholar
  6. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. PNAS USA 102:3135–3140PubMedCrossRefGoogle Scholar
  7. Breiling A, Sessa L, Orlando V (2007) Biology of polycomb and trithorax group proteins. Int Rev Cytol 258:83–136PubMedCrossRefGoogle Scholar
  8. Byrd KN, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 100:11535–11540PubMedCrossRefGoogle Scholar
  9. Carles CC, Fletcher JC (2009) The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes Dev 23:2723–2728PubMedCrossRefGoogle Scholar
  10. Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K (2008) The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315:355–368PubMedCrossRefGoogle Scholar
  11. Crosby MA, Miller C, Alon T, Watson KL, Verrijzer CP, Goldman-Levi R, Zak NB (1999) The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol 19:1159–1170PubMedGoogle Scholar
  12. Ding Y, Avramova Z, Fromm M (2011) Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. Plant Cell 23:350–363PubMedCrossRefGoogle Scholar
  13. Dingwall AK, Beek SJ, McCallum CM, Tamkun JW, Kalpana GV, Goff SP, Scott MP (1995) The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell 6:777–791PubMedGoogle Scholar
  14. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13:713–719PubMedCrossRefGoogle Scholar
  15. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246PubMedCrossRefGoogle Scholar
  16. Franke A, DeCamillis M, Zink D, Cheng N, Brock HW, Paro R (1992) Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J 11:2941–2950PubMedGoogle Scholar
  17. Grimaud C, Négre N, Cavalli G (2006) From genetics to epigenetics: the tale of polycomb group and trithorax group genes. Chromosome Res 14:363–375PubMedCrossRefGoogle Scholar
  18. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740PubMedCrossRefGoogle Scholar
  19. Jiang D, Gu X, He Y (2009) Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 21:1733–1746PubMedCrossRefGoogle Scholar
  20. Jiang D, Kong NC, Gu X, Li Z, He Y (2011) Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet 7:e1001330. doi: 10.1371/journal.pgen.1001330 PubMedCrossRefGoogle Scholar
  21. Katz JE, Dlakic M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2:525–540PubMedGoogle Scholar
  22. Kim SY, He Y, Jacob Y, Noh YS, Michaels M, Amasino R (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17:3301–3310PubMedCrossRefGoogle Scholar
  23. Ko JH, Mitina I, Tamada Y, Hyun Y, Choi Y, Amasino RA, Noh B, Noh YS (2010) Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO J 29:3208–3215PubMedCrossRefGoogle Scholar
  24. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16:2893–2905PubMedCrossRefGoogle Scholar
  25. Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14:183–193PubMedCrossRefGoogle Scholar
  26. Lachner M, Sengupta R, Schotta G, Jenuwein T (2004) Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. Cold Spring Harbor Symp Quant Biol 69:209–218PubMedCrossRefGoogle Scholar
  27. Lafos M, Schuebert D (2009) Balance of power–dynamic regulation of chromatin in plant development. Biol Chem 390:1113–1123PubMedCrossRefGoogle Scholar
  28. Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, Frommer WB (2008) Molecular and cellular approaches for the detection of protein–protein interactions: latest techniques and current limitations. Plant J 53:610–635PubMedCrossRefGoogle Scholar
  29. Lin M, Hu B, Chen L, Sun P, Fan Y, Wu P, Chen X (2009) Computational identification of potential molecular interactions in Arabidopsis. Plant Phys 151:34–46CrossRefGoogle Scholar
  30. Mazo AM, Huang DH, Mozer BA, Dawid IB (1990) The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. PNAS USA 87:2112–2116PubMedCrossRefGoogle Scholar
  31. Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999PubMedCrossRefGoogle Scholar
  32. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. PNAS USA 98:12902–12907PubMedCrossRefGoogle Scholar
  33. Minami Y, Hohfeld J, Ohtsuka K, Hartl FU (1996) Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271:19617–19624PubMedCrossRefGoogle Scholar
  34. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22PubMedCrossRefGoogle Scholar
  35. Muramoto T, Muller I, Thomas G, Melvin A, Chubb JR (2010) Methylation of H3K4 is required for inheritance of active transcriptional states. Curr Biol 20:397–406PubMedCrossRefGoogle Scholar
  36. Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 1769:316–329PubMedCrossRefGoogle Scholar
  37. Pagnussat GC, Yu H-J, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie L-F, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614PubMedCrossRefGoogle Scholar
  38. Papoulas O, Beek SJ, Moseley SL, McCallum CM, Sarte M, Shearn A, Tamkun JW (1998) The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125:3955–3966PubMedGoogle Scholar
  39. Petruk S, Sedkov Y, Smith S, Tillib S, Kraevski V, Nakamura T, Canaani E, Croce CM, Mazo A (2001) Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294:1331–1334PubMedCrossRefGoogle Scholar
  40. Pien S, Fleury D, Mylne J, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U (2008) Unraveling trithorax functions in plants: ATX1 dynamically regulates the activation of FLC via histone H3 lysine 4 trimethylation. Plant Cell 20:580–588PubMedCrossRefGoogle Scholar
  41. Qiu X-B, Shao Y-M, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570PubMedCrossRefGoogle Scholar
  42. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Ann Rev Genet 38:413–443PubMedCrossRefGoogle Scholar
  43. Rozovskaia T, Tillib S, Smith S, Sedkov Y, Rozenblatt-Rosen O, Petruk S, Yano T, Nakamura T, Ben-Simchon L, Gildea J, Croce CM, Shearn A, Canaani E, Mazo A (1999) Trithorax and ASH1 interact directly and associate with the trithorax group-responsive bxd region of the Ultrabithorax promoter. Mol Cell Biol 19:6441–6447PubMedGoogle Scholar
  44. Rozovskaia T, Rozenblatt-Rosen O, Sedkov Y, Burakov D, Yano T, Nakamura T, Petruck S, Ben-Simchon L, Croce CM, Mazo A, Canaani E (2000) Self-association of the SET domains of human ALL-1 and of Drosophila TRITHORAX and ASH1 proteins. Oncogene 19:351–357PubMedCrossRefGoogle Scholar
  45. Ruden DM, Lu X (2008) Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genomics 9:500–508PubMedCrossRefGoogle Scholar
  46. Saleh A, Al-abdallat A, Ndamukong I, Alvarez-Venegas R, Avramova Z (2007) ATX1 and CLF establish a bivalent chromatin mark at the silenced AGAMOUS locus in Arabidopsis. Nucleic Acids Res 35:6290–6296PubMedCrossRefGoogle Scholar
  47. Saleh A, Alvarez-Venegas R, Avramova Z (2008) Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci. Gene 423:43–47PubMedCrossRefGoogle Scholar
  48. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745PubMedCrossRefGoogle Scholar
  49. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCrossRefGoogle Scholar
  50. Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a polycomb complex. Cell 98:37–46PubMedCrossRefGoogle Scholar
  51. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Ann Rev Biochem 75:243–269PubMedCrossRefGoogle Scholar
  52. Simon JA, Tamkun JW (2002) Programming off and on states in chromatin: mechanisms of polycomb and trithorax group complexes. Curr Opin Genet Dev 12:210–218PubMedCrossRefGoogle Scholar
  53. Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol 132:907–925PubMedCrossRefGoogle Scholar
  54. Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786PubMedCrossRefGoogle Scholar
  55. Tanaka Y, Katagiri Z, Kawahashi K, Kioussis D, Kitajima S (2007) Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 397:161–168PubMedCrossRefGoogle Scholar
  56. Tariq M, Nussbaumer U, Chen Y, Beisel C, Paro P (2009) Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. PNAS USA 106:1157–1162PubMedCrossRefGoogle Scholar
  57. Thorstensen T, Grini PE, Aalen RB (2011) SET domain proteins in plant development. Biochim Biophys Acta 1809:407–420PubMedCrossRefGoogle Scholar
  58. Tripoulas N, LaJeunesse D, Gildea J, Shearn A (1996) The Drosophila ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics 143:913–928PubMedGoogle Scholar
  59. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360PubMedCrossRefGoogle Scholar
  60. Zhao Z, Yu Y, Meyer D, Wu C, Shen WH (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7:1156–1160CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  • María del Pilar Valencia-Morales
    • 1
  • José Alberto Camas-Reyes
    • 1
  • José Luis Cabrera-Ponce
    • 1
  • Raúl Alvarez-Venegas
    • 1
    Email author
  1. 1.Departamento de Ingeniería GenéticaCINVESTAV Unidad IrapuatoIrapuatoMexico

Personalised recommendations