Journal of Plant Research

, Volume 125, Issue 5, pp 643–651 | Cite as

Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha

  • Kimitsune Ishizaki
  • Maiko Nonomura
  • Hirotaka Kato
  • Katsuyuki T. Yamato
  • Takayuki Kohchi
Regular Paper


The phytohormone auxin plays a pivotal role in various developmental aspects in land plants. However, little is known of the auxin response and distribution in non-vascular plants. In this study, we made transgenic plants of the liverwort Marchantia polymorpha which express the uidA (GUS) reporter gene under control of the soybean auxin-inducible promoter, ProGH3, and used it to indirectly monitor auxin-mediated transcriptional activation in planta. Transgenic plants carrying ProGH3:GUS showed GUS activity in an auxin-dependent manner. Histochemical GUS staining was observed at the bottom of gemma cups in the process of vegetative propagation. Significant GUS activity was also detected around the gametophyte–sporophyte junction as well as the developing sporophyte after fertilization. These results suggest that the activity of auxin is crucial in both gametophyte and sporophyte development in M. polymorpha, and that the mechanism for auxin-mediated transcriptional activation had already been established when plants emerged on the terrestrial environment.


Auxin Bryophytes Evolution Morphogenesis Pattern formation Vegetative propagation 


  1. Barnes CR, Land WJG (1908) Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:401–409CrossRefGoogle Scholar
  2. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  3. Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943PubMedCrossRefGoogle Scholar
  4. Bierfreund NM, Reski R, Decker EL (2003) Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. Plant Cell Rep 21:1143–1152PubMedCrossRefGoogle Scholar
  5. Binns AN, Maravolo NC (1972) Apical dominance, polarity, and adventitious growth in Marchantia polymorpha. Am J Bot 59:691–696CrossRefGoogle Scholar
  6. Bowman JL, Floyd SK, Sakakibara K (2007) Green genes-comparative genomics of the green branch of life. Cell 129:229–234PubMedCrossRefGoogle Scholar
  7. Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285PubMedCrossRefGoogle Scholar
  8. Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27:1467–1473PubMedCrossRefGoogle Scholar
  9. Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338PubMedCrossRefGoogle Scholar
  10. Davidonis GH, Munroe MH (1972) Apical dominance in Marchantia: correlative inhibition of neighbor lobe growth. Bot Gaz 133:177–184CrossRefGoogle Scholar
  11. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefGoogle Scholar
  12. Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186PubMedCrossRefGoogle Scholar
  13. Gaal DJ, Dufresne SJ, Maravolo NC (1982) Transport of 14C-indoleacetic acid in the hepatic Marchantia polymorpha. Bryologist 85:410–418CrossRefGoogle Scholar
  14. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  15. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460PubMedCrossRefGoogle Scholar
  16. Hagen G, Kleinschmidt A, Guilfoyle T (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162:147–153CrossRefGoogle Scholar
  17. Hagen G, Martin G, Li Y, Guilfoyle TJ (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579PubMedCrossRefGoogle Scholar
  18. Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14:373–386PubMedCrossRefGoogle Scholar
  19. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49:1084–1091PubMedCrossRefGoogle Scholar
  20. Jang G, Yi K, Pires N, Menand B, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138:2273–2281PubMedCrossRefGoogle Scholar
  21. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  22. Kaul KM, Mitra GC, Tripathi BK (1962) Responses of Marchantia in aseptic culture to well-known auxins and antiauxins. Ann Bot 26:447–467Google Scholar
  23. Larkin PJ, Gibson JM, Mathesius U, Weinman JJ, Gartner E, Hall E, Tanner GJ, Rolfe BG, Djordjevic MA (1996) Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gravitropism and lateral root development. Transgenic Res 5:325–335PubMedCrossRefGoogle Scholar
  24. Larue CD, Narayanaswami S (1957) Auxin inhibition in the liverwort Lunularia. New Phytol 56:61–70CrossRefGoogle Scholar
  25. Lau S, Jurgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746PubMedCrossRefGoogle Scholar
  26. Li Y, Wu YH, Hagen G, Guilfoyle T (1999) Expression of the auxin-inducible GH3 promoter/GUS fusion gene as a useful molecular marker for auxin physiology. Plant Cell Physiol 40:675–682CrossRefGoogle Scholar
  27. Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657PubMedGoogle Scholar
  28. Maravolo NC (1976) Polarity and localization of auxin movement in hepatic, Marchantia polymorpha. Am J Bot 63:526–531CrossRefGoogle Scholar
  29. Maravolo NC (1980) Control of development in hepatics. Bull Torrey Bot Club 107:308–324CrossRefGoogle Scholar
  30. Maravolo NC, Voth PD (1966) Morphogenic effects of three growth substances on Marchantia gemmalings. Bot Gaz 127:79–86CrossRefGoogle Scholar
  31. Petersson SV, Johansson AI, Kowalczyk M, Mokoveychuk A, Wang JY, Moritz T, Greve M, Benfy PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668PubMedCrossRefGoogle Scholar
  32. Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20:1–6CrossRefGoogle Scholar
  33. Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516PubMedCrossRefGoogle Scholar
  34. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518PubMedGoogle Scholar
  35. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  36. Schneider MJ, Troxler RF, Voth PD (1967) Occurrence of indoleacetic acid in bryophytes. Bot Gaz 128:174–179CrossRefGoogle Scholar
  37. Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101PubMedCrossRefGoogle Scholar
  38. Smith GM (1955) Cryptogamic botany. Bryophytes and pteridophytes, vol II. McGraw-Hill Book Company, Inc., New York, pp 46–56Google Scholar
  39. Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical–basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123PubMedCrossRefGoogle Scholar
  40. Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234:73–81PubMedCrossRefGoogle Scholar
  41. Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754PubMedCrossRefGoogle Scholar
  42. Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Gobel C, Grzeganek P, Feussner I, Hansch R, Polle A (2008) GH3:GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315PubMedCrossRefGoogle Scholar
  43. Thimann KV (1938) Hormones and the analysis of growth. Plant Physiol 13:437–449PubMedCrossRefGoogle Scholar
  44. Thomas RJ (1980) Cell elongation in hepatics: the seta system. Bull Torrey Bot Club 107:339–345CrossRefGoogle Scholar
  45. Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623PubMedGoogle Scholar
  46. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedGoogle Scholar
  47. Ulmasov T, Hagen G, Guilfoyle TJ (1999a) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849PubMedCrossRefGoogle Scholar
  48. Ulmasov T, Hagen G, Guilfoyle TJ (1999b) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319PubMedCrossRefGoogle Scholar
  49. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016PubMedCrossRefGoogle Scholar
  50. Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  • Kimitsune Ishizaki
    • 1
  • Maiko Nonomura
    • 1
  • Hirotaka Kato
    • 1
  • Katsuyuki T. Yamato
    • 1
    • 2
  • Takayuki Kohchi
    • 1
  1. 1.Graduate School of BiostudiesKyoto UniversityKyotoJapan
  2. 2.Department of Biology-Oriented Science and TechnologyKinki UniversityKinokawaJapan

Personalised recommendations