Journal of Plant Research

, Volume 125, Issue 1, pp 55–69 | Cite as

Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species

  • Yun-Dong Gao
  • Song-Dong ZhouEmail author
  • Xing-Jin HeEmail author
  • Juan Wan
Regular Paper


In this paper, karyotype data of the tribe Lilieae in China were analyzed and been superimposed onto a phylogenetic framework constructed by the internal transcribed spacer to investigate the karyotype evolution. Ten parameters for analyzing karyotype asymmetry were assessed and karyotypic idiogram of five genera of Lilieae were illustrated. The results showed that, the relationship of genera in Lilieae that inferred from Maximum Parsimony criteria and Bayesian Inference were congruent with previous studies, which focused on higher level of Liliales. The karyotype showed distinctive among genera, mainly expressed on the location and amount of secondary constrictions and intercalary satellites: the genus Notholirion have neither of them, and the genera Cardiocrinum and Fritillaria have the secondary constriction alone; the genera Lilium and Nomocharis showed both features, and the distribute pattern of the intercalary satellites showed similarity among related clades. The asymmetry that assessed by several methods indicated that the evolution trend of Lilieae did not follow a single direction, but different in each genus. On the sectional level of the genus Lilium (including Nomocharis) the karyotype evolution included three major periods. Combining the chromosomal structure variations and karyotype asymmetry, the chromosome diversity and evolution in Lilieae were quite clear in the light of molecular inference.


China ITS Karyotype asymmetry Secondary constrictions Lilieae 



We thank Dr. Yan Yu for providing the karyotype analyses tool package (NucType ver. 1.10, for this study. This work was supported by the National Natural Science Foundation of China (31070166), Doctoral Fund of Ministry of Education of China (20090181110064), the Basic Research Program from the Ministry of Science and Technology of China (Grant No. 2007FY110100) and the Research Fund for the Large-scale Scientific Facilities of the Chinese Academy of Sciences (2009-LSF-GBOWS-01).

Supplementary material

10265_2011_422_MOESM1_ESM.png (799 kb)
SFigure 1. The scatter matrix of ten asymmetry indexes. The symbols indicated different genera (PNG 798 kb)
10265_2011_422_MOESM2_ESM.xls (90 kb)
Supplementary material 2 (XLS 90 kb)


  1. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121CrossRefGoogle Scholar
  2. Arano H (1963) Cytological studies in subfamily Carduoideae (Compositae) of Japan. IX. The karyotype analysis and phylogenic considerations on Pertya and Ainsliaea. Botanical Magazine (Tokyo) 76:32–39Google Scholar
  3. Ceccarelli M, Minelli S, Maggini F, Cionini PG (1995) Genome size variation in Vicia faba. Heredity 74:180–187CrossRefGoogle Scholar
  4. Comber HF (1949) A new classification of genus Lilium. Royal Horticultural Society of the Liliy Year Book, vol 13. p 85Google Scholar
  5. Das AB, Mohanty S, Marrs RH, Das P (1999) Somatic chromosome number and karyotype diversity in fifteen species of Mammillaria of the family Cactaceae. Cytobios 97:141–151Google Scholar
  6. De Melo Nationiel F, Guerra M, Benko-Iseppon AM, De Menezes NL (1997) Cytogenetics and cytotaxonomy of Velloziaceae. Plant Syst Evol 204:257–273CrossRefGoogle Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  8. Fay MF, Chase MW, Rønsted N et al (2006) Phylogenetics of Liliales: summarized evidence from combined analyses of five plastid and one mitochondrial loci. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution (excluding Poales). Rancho Santa Ana Botanic Garden, Claremont, pp 559–565Google Scholar
  9. Gao YD, Zhou SD, He XJ (2009) Karyotype of four genera in Liliaceae (s. str.) from Hengduan Mountains of Southwest China. Acta Botanica Yunnancia 31:399–405Google Scholar
  10. González-Aguilera JJ, Fernández-Peralta AM (1984) Phylogenetic relationships in the family Resedaceae. Genetica 64:185–198CrossRefGoogle Scholar
  11. Greilhuber J, Speta F (1976) C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Syst Evol 126:149–188Google Scholar
  12. Hayashi K, Kawano S (2000) Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol 15:73–93CrossRefGoogle Scholar
  13. Hong DY (1990) Plant cytotaxonomy. Science Press, BeijingGoogle Scholar
  14. Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster. Am J Bot 49:116–119CrossRefGoogle Scholar
  15. İkinci N, Oberprieler C, Güner A (2006) On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia 36:647–656CrossRefGoogle Scholar
  16. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and Its application in plant systematics. Ann Missouri Bot Garden 87:482–498CrossRefGoogle Scholar
  17. Liang SY (1995) Chorology of Liliaceae (S. Str.) and its bearing on the Chinese flora. Acta Phytotaxonomica Sinica 33:27–51Google Scholar
  18. Liang SY, Tamura M (2000) In: Wu ZY, Raven PH (eds.) Flora of China, vol 24. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis, pp 135–159Google Scholar
  19. Lifante ZD (1996) A karyological study of Asphodelus L. (Asphodelaceae) from the Western Mediterranean. Bot J Linn Soc 121:285–344Google Scholar
  20. Morrison DA (2009) A framework for phylogenetic sequence alignment. Plant Syst Evol 282:127–149CrossRefGoogle Scholar
  21. Muratović E, Bogunić F, Šoljan D, Siljak-Yakovlev S (2005) Does Lilium bosniacum merit species rank? A classical and molecular-cytogenetic analysis. Plant Syst Evol 252:97–109CrossRefGoogle Scholar
  22. Muratović E, Robin O, Bogunić F, Šoljan D, Siljak-Yakovlev S (2010a) Karyotype evolution and speciation of European lilies from Lilium sect. Liriotypus. Taxon 59:165–175Google Scholar
  23. Muratović E, Hidalgo O, Garnatje T, Siljak-Yakovlev S (2010b) Molecular phylogeny and genome size in European Lilies (Genus Lilium, Liliaceae). Adv Sci Lett 3:180–189CrossRefGoogle Scholar
  24. Narayan RKJ, Rees H (1976) Nuclear DNA variation in Lathyrus. Chromosoma 54:141–154CrossRefGoogle Scholar
  25. Nishikawa T, Okazaki K, Uchino T, Arakawa K, Nagamine T (1999) A molecular phylogeny of Lilium in the internal transcribed spacer region. J Mol Evol 49:238–249PubMedCrossRefGoogle Scholar
  26. Nishikawa T, Okazaki K, Arakawa K, Nagamine T (2001) Phylogenetic analysis of section Sinomartagon in genus Lilium using sequences of the internal transcribed spacer region in nuclear ribosomal DNA. Breed Sci 51:39–46CrossRefGoogle Scholar
  27. Noda S (1991) Chromosomal variation and evolution in the genus Lilium. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, Amsterdam, pp 507–524Google Scholar
  28. Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Department of Systematic Zoology, EBC, Uppsala University, UppsalaGoogle Scholar
  29. Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48CrossRefGoogle Scholar
  30. Patterson TB, Givnish TJ (2002) Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data. Evolution 56:233–252PubMedGoogle Scholar
  31. Peruzzi L, Leitch IJ, Caparelli KF (2009) Chromosome diversity and evolution in Liliaceae. Ann Bot 103:459–475PubMedCrossRefGoogle Scholar
  32. Raina SN, Rees H (1983) DNA variation between and within chromosome complements of Vicia species. Heredity 51:335–346CrossRefGoogle Scholar
  33. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  34. Rønsted N, Law S, Thornton H, Fay MF, Chase MW (2005) Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol Phylogenet Evol 35:509–527PubMedCrossRefGoogle Scholar
  35. Rudall PJ, Stobart KL, Hong WP, Conran JG, Funess CA, Kite GC, Chase MW (2000) Consider the lilies-systematics of Liliales. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Australia, pp 347–359Google Scholar
  36. Shan F, Yan G, Plummer JA (2003) Karyotype evolution in the genus Boronia (Rutaceae). Bot J Linn Soc 142:309–320CrossRefGoogle Scholar
  37. Siljak-Yakovlev S, Peccenini S, Muratovic E, Zoldos V, Robin O, Vallés J (2003) Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Syst Evol 236:165–173CrossRefGoogle Scholar
  38. Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium (Liliaceae). Plant Syst Evol 163:53–69CrossRefGoogle Scholar
  39. Stace HM (1978) Cytoevolution in the genus Calotis R. Br. (Compositae: Astereae). Aust J Bot 26:287–307CrossRefGoogle Scholar
  40. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  41. Stewart RN (1947) The morphology of somatic chromosomes in Lilium. Am J Bot 34:9–26PubMedCrossRefGoogle Scholar
  42. Swofford DL (2003) PAUP*. Phylogenetic analysis using Parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  43. Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  44. Tamura MN (1998) Liliaceae. In: Kubitzki K (ed) The families and genera of vascular plants. III. Flowering plants-monocotyledons, Lilianae (except Orchidaceae). Springer, Berlin, pp 343–353Google Scholar
  45. Tamura MN, Yamashita J, Fuse S, Haraguchi M (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res 117:109–120PubMedCrossRefGoogle Scholar
  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  47. The State Pharmacopoeia Commission of the People’s Republic of China (2000) Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, BeijingGoogle Scholar
  48. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  49. Vanzela ALL, Ruas PM, Marin-Morales MA (1997) Karyotype studies of some species of Dalechampia Plum. (Euphorbiaceae). Bot J Linn Soc 125:25–33Google Scholar
  50. Venora G, Blangiforti S, Ruffini Castiglione M, Pignone D, Losavio F, Cremonini R (2002) Chromatin organisation and computer aided karyotyping of Triticum durum Desf. cv Timilia. Caryologia 55:91–98Google Scholar
  51. Wang FZ, Tang J (1980) Lilium L. In: Flora Reipublicae Popularis Sinicae, vol 14. Science Press, Beijing, pp 116–157Google Scholar
  52. Watanabe K, King RM, Yahara T, Ito M, Yokoyama J, Suzuki T, Crawford DJ (1995) Chromosomal cytology and evolution in Eupatorieae (Asteraceae). Ann Missouri Bot Garden 82:581–592CrossRefGoogle Scholar
  53. Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145–161Google Scholar
  54. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455CrossRefGoogle Scholar
  55. Wen J (2001) Evolution of Eastern Asian–Eastern North American biogeographic disjunctions: a few additional issues. Int J Plant Sci 162(6): S117–S122 (Supplement: historical biogeography of the Northern Hemisphere (Nov. 2001))Google Scholar
  56. Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the Ginseng Genus, Araliaceae): inferences from ITS Sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6(2):167–177PubMedCrossRefGoogle Scholar
  57. Wen J, Shi SH, Jansen RK, Zimmer EA (1998) Phylogeny and biogeography of Aralia sect. Aralia (Araliaceae). Am J Bot 85:885–875Google Scholar
  58. Wu ZY, Li H, Yang CR (1994) Cytogeography and phylogeny of Lilieae. Acta Botanica Yunnanica 1994(Suppl. VI):101–112Google Scholar
  59. Xiang QY, Soltis DE (2001) Dispersal-vicariance analyses of intercontinental disjuncts: historical biogeographical implications for angiosperms in the Northern Hemisphere. Int J Plant Sci 162: S29–S39 (Supplement: Historical Biogeography of the Northern Hemisphere (Nov. 2001))Google Scholar
  60. Xiang QY, Soltis DE, Soltis PS, Manchester SR, Crawford DJ (2000) Timing the eastern Asian–eastern North American floristic disjunction: molecular clock corroborates paleontological estimates. Mol Phylogenet Evol 15:462–472PubMedCrossRefGoogle Scholar
  61. Zarco CR (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2011

Authors and Affiliations

  1. 1.Laboratory of Systematic and Evolutionary Botany, College of Life ScienceSichuan UniversityChengduChina

Personalised recommendations