Advertisement

Journal of Plant Research

, Volume 124, Issue 4, pp 539–548 | Cite as

Systems biology approaches to abscisic acid signaling

  • Taishi Umezawa
JPR Symposium Opening a New Era of ABA Research

Abstract

Recent advances in our understanding of abscisic acid (ABA) signaling have identified a core pathway consisting of receptors (PYR/PYL/RCAR), protein phosphatases (PP2C), protein kinases (SnRK2), and several downstream factors that will lead to the next stage of ABA research. Systems biology will be an important concept for further understanding ABA responses in plants. In this review, two practical approaches of systems biology to ABA signaling are presented: the one is ‘transcriptome analysis’, which covers coding genes as well as unannotated transcripts, and the other is ‘phosphoproteomics’. The latter technology will offer an unprecedented overview of the regulatory networks involved in ABA signaling because protein phosphorylation/dephosphorylation is a major center of such regulation. Systematic studies will contribute to our understanding of the network structure and dynamics of ABA signaling; moreover, systems biology will facilitate ABA signaling studies as well as future biotechnological applications in crops or trees.

Keywords

Abscisic acid (ABA) Signal transduction Systems biology Phosphoproteomics Next generation sequencing 

Notes

Acknowledgments

I express my deepest gratitude for Dr. Kazuo Shinozaki (RIKEN). I thank Dr. Takashi Hirayama (Okayama Univ.), Dr. Yasushi Ishimaha (Kyoto Univ.), Dr. Naoyuki Sugiyama (Keio Univ.) and other lab members for their support and collaboration, and also thank Dr. Kazuyuki Kuchitsu (Tokyo Univ. Sci.) and Dr. Eiji Nambara (Univ. Toronto) for their helpful comments and discussions about the manuscript. Our study was partly supported by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, by the Strategic Programs for R&D (President’s Discretionary Fund) from RIKEN, and by the Program for the Promotion of Basic Research Activities for Innovative Biosciences (BRAIN) of Japan.

References

  1. Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano J, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681PubMedCrossRefGoogle Scholar
  2. Agrawal GK, Thelen JJ (2006) Large-scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059PubMedCrossRefGoogle Scholar
  3. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedCrossRefGoogle Scholar
  4. Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214PubMedCrossRefGoogle Scholar
  5. Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034–1051PubMedCrossRefGoogle Scholar
  6. Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt M, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720PubMedCrossRefGoogle Scholar
  7. Chen L, Luo M, Wang Y, Wu K (2010a) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353PubMedCrossRefGoogle Scholar
  8. Chen Y, Hoehenwarter W, Weckwerth W (2010b) Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J 63:1–17PubMedCrossRefGoogle Scholar
  9. Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud J (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146PubMedCrossRefGoogle Scholar
  10. Choi H, Park H, Park JH, Kim S, Im M, Seo H, Kim Y, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761PubMedCrossRefGoogle Scholar
  11. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439PubMedCrossRefGoogle Scholar
  12. Csete M, Doyle J (2004) Bow ties, metabolism and disease. Trends Biotechnol 22:446–450PubMedCrossRefGoogle Scholar
  13. Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287PubMedCrossRefGoogle Scholar
  14. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  15. de la Fuente van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A, Csaszar E, Dohnal I, Lecourieux D, Hirt H (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:3267–3278Google Scholar
  16. de Torres Zabala M, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J 59:375–386PubMedCrossRefGoogle Scholar
  17. Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Bart R, Chen X, Zhu L, Farmerie WG et al (2009) A rice kinase-protein interaction map. Plant Physiol 149:1478–1492PubMedCrossRefGoogle Scholar
  18. Fujii H, Zhu J (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106:8380–8385PubMedCrossRefGoogle Scholar
  19. Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S, Cutler SR, Sheen J, Rodriguez PL, Zhu J (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664PubMedCrossRefGoogle Scholar
  20. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132PubMedCrossRefGoogle Scholar
  21. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993PubMedCrossRefGoogle Scholar
  22. Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106:21425–21430PubMedCrossRefGoogle Scholar
  23. Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107:8023–8028PubMedCrossRefGoogle Scholar
  24. Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542PubMedCrossRefGoogle Scholar
  25. Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ane J, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152:19–28PubMedCrossRefGoogle Scholar
  26. Guo Y, Xiong L, Song C, Gong D, Halfter U, Zhu J (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244PubMedCrossRefGoogle Scholar
  27. Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038PubMedCrossRefGoogle Scholar
  28. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351PubMedCrossRefGoogle Scholar
  29. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052PubMedCrossRefGoogle Scholar
  30. Hoth S, Morgante M, Sanchez J, Hanafey MK, Tingey SV, Chua N (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci 115:4891–4900PubMedCrossRefGoogle Scholar
  31. Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708PubMedCrossRefGoogle Scholar
  32. Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43PubMedCrossRefGoogle Scholar
  33. Kagaya Y, Hobo T, Murata M, Ban A, Hattori T (2002) Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14:3177–3189PubMedCrossRefGoogle Scholar
  34. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748PubMedCrossRefGoogle Scholar
  35. Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R (2009) Plantphosphoproteomics: an update. Proteomics 9:964–988PubMedCrossRefGoogle Scholar
  36. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363PubMedCrossRefGoogle Scholar
  37. Kim J, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588PubMedCrossRefGoogle Scholar
  38. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  39. Kline KG, Barrett-Wilt GA, Sussman MR (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci USA 107:15986–15991PubMedCrossRefGoogle Scholar
  40. Klingler JP, Batelli G, Zhu J (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210PubMedCrossRefGoogle Scholar
  41. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SnRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949PubMedCrossRefGoogle Scholar
  42. Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106:21419–21424PubMedCrossRefGoogle Scholar
  43. Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28:3745–3757PubMedCrossRefGoogle Scholar
  44. Li J, Kinoshita T, Pandey S, Ng CK, Gygi SP, Shimazaki K, Assmann SM (2002) Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418:793–797PubMedCrossRefGoogle Scholar
  45. Lumba S, Cutler S, McCourt P (2010) Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu Rev Cell Dev Biol 26:445–469PubMedCrossRefGoogle Scholar
  46. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  47. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221PubMedCrossRefGoogle Scholar
  48. Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim J, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149PubMedCrossRefGoogle Scholar
  49. Mentzen WI, Fuente ADL, Hirt H, van Bentem S (2008) Towards functionalphosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 8:4453–4465PubMedCrossRefGoogle Scholar
  50. Miao Y, Lv D, Wang P, Wang X, Chen J, Miao C, Song C (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766PubMedCrossRefGoogle Scholar
  51. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709PubMedCrossRefGoogle Scholar
  52. Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K (2010) Large-scale comparativephosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174PubMedCrossRefGoogle Scholar
  53. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363PubMedCrossRefGoogle Scholar
  54. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  55. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell 126:467–475PubMedCrossRefGoogle Scholar
  56. Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711–1726PubMedCrossRefGoogle Scholar
  57. Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949PubMedCrossRefGoogle Scholar
  58. Nishimura N, Sarkeshik A, Nito K, Park S, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299PubMedCrossRefGoogle Scholar
  59. Nühse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405PubMedCrossRefGoogle Scholar
  60. Nühse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940PubMedCrossRefGoogle Scholar
  61. Ohta M, Guo Y, Halfter U, Zhu J (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776PubMedCrossRefGoogle Scholar
  62. Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62:39–51PubMedCrossRefGoogle Scholar
  63. Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119PubMedCrossRefGoogle Scholar
  64. Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148PubMedCrossRefGoogle Scholar
  65. Pandey S, Wang R, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372PubMedCrossRefGoogle Scholar
  66. Paradela A, Albar JP (2008) Advances in the analysis of protein phosphorylation. J Proteome Res 7:1809–1818PubMedCrossRefGoogle Scholar
  67. Park S, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J, Schroeder JI, Volkman BF et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedGoogle Scholar
  68. Peck SC (2006) Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. J Exp Bot 57:1523–1527PubMedCrossRefGoogle Scholar
  69. Polouliakh N, Nock R, Nielsen F, Kitano H (2009) G-protein coupled receptor signaling architecture of mammalian immune cells. PLoS One 4:e4189PubMedCrossRefGoogle Scholar
  70. Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92PubMedCrossRefGoogle Scholar
  71. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedCrossRefGoogle Scholar
  72. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401PubMedCrossRefGoogle Scholar
  73. Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa L, Reski R, Rensing S, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45PubMedCrossRefGoogle Scholar
  74. Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu J, Ronald P, Fromm ME (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13PubMedCrossRefGoogle Scholar
  75. Rohila JS, Chen M, Chen S, Chen J, Cerny RL, Dardick C, Canlas P, Fujii H, Gribskov M, Kanrar S, Knoflicek L, Stevenson B, Xie M, Xu X, Zheng X, Zhu J, Ronald P, Fromm ME (2009) Protein–protein interactions of tandem affinity purified protein kinases from rice. PLoS One 4:e6685PubMedCrossRefGoogle Scholar
  76. Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL (2008) HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20:2972–2988PubMedCrossRefGoogle Scholar
  77. Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S, Márquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–578PubMedCrossRefGoogle Scholar
  78. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078PubMedCrossRefGoogle Scholar
  79. Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto D, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448Google Scholar
  80. Sato A, Gambale F, Dreyer I, Uozumi N (2010) Modulation of the Arabidopsis KAT1 channel by an activator of protein kinase C in Xenopus laevis oocytes. FEBS J 277:2318–2328PubMedCrossRefGoogle Scholar
  81. Schulze WX (2010) Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr Opin Plant Biol 13:279–286CrossRefGoogle Scholar
  82. Shang Y, Yan L, Liu Z, Cao Z, Mei C, Xin Q, Wu F, Wang X, Du S, Jiang T, Zhang X, Zhao R, Sun H, Liu R, Yu Y, Zhang D (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedCrossRefGoogle Scholar
  83. Shen Y, Wang X, Wu F, Du S, Cao Z, Shang Y, Wang X, Peng C, Yu X, Zhu S, Fan R, Xu Y, Zhang D (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826PubMedCrossRefGoogle Scholar
  84. Sirichandra C, Gu D, Hu H, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986PubMedCrossRefGoogle Scholar
  85. Stolc V, Samanta MP, Tongprasit W, Sethi H, Liang S, Nelson DC, Hegeman A, Nelson C, Rancour D, Bednarek S, Ulrich EL, Zhao Q, Wrobel RL, Newman CS, Fox BG, Phillips GN, Markley JL, Sussman MR (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci USA 102:4453–4458PubMedCrossRefGoogle Scholar
  86. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244PubMedCrossRefGoogle Scholar
  87. Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:2–7CrossRefGoogle Scholar
  88. Toyoda T, Shinozaki K (2005) Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models. Plant J 43:611–621PubMedCrossRefGoogle Scholar
  89. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedCrossRefGoogle Scholar
  90. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593PubMedCrossRefGoogle Scholar
  91. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in abscisic acid responses: sensing, signaling, and transport. Plant Cell Physiol 51:1821–1839PubMedCrossRefGoogle Scholar
  92. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078PubMedCrossRefGoogle Scholar
  93. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138PubMedCrossRefGoogle Scholar
  94. Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651PubMedCrossRefGoogle Scholar
  95. Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380PubMedCrossRefGoogle Scholar
  96. Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104–117PubMedCrossRefGoogle Scholar
  97. Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184PubMedCrossRefGoogle Scholar
  98. Vranová E, Tähtiharju S, Sriprang R, Willekens H, Heino P, Tapio Palva E, Inzé D, Van Camp W (2001) The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. J Exp Bot 52:181–182PubMedCrossRefGoogle Scholar
  99. Wang X, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072PubMedCrossRefGoogle Scholar
  100. Xin Z, Zhao Y, Zheng Z (2005) Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiol 139:1350–1365PubMedCrossRefGoogle Scholar
  101. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803PubMedCrossRefGoogle Scholar
  102. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692PubMedCrossRefGoogle Scholar
  103. Yazaki J, Kishimoto N, Nagata Y, Ishikawa M, Fujii F, Hashimoto A, Shimbo K, Shimatani Z, Kojima K, Suzuki K, Yamamoto M, Honda S, Endo A, Yoshida Y, Sato Y, Takeuchi K, Toyoshima K, Miyamoto C, Wu J, Sasaki T et al (2003) Genomics approach to abscisic acid- and gibberellin-responsive genes in rice. DNA Res 10:249–261PubMedCrossRefGoogle Scholar
  104. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006a) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318PubMedCrossRefGoogle Scholar
  105. Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006b) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140:115–126PubMedCrossRefGoogle Scholar
  106. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685PubMedCrossRefGoogle Scholar
  107. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513PubMedCrossRefGoogle Scholar
  108. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  109. Zheng Z, Nafisi M, Tam A, Li H, Crowell DN, Chary SN, Schroeder JI, Shen J, Yang Z (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14:2787–2797PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2011

Authors and Affiliations

  1. 1.Gene Discovery Research GroupRIKEN Plant Science CenterTsukubaJapan

Personalised recommendations