Journal of Plant Research

, Volume 124, Issue 2, pp 265–268 | Cite as

Fertility and precocity of Osmunda × intermedia offspring in culture

  • Yoko Yatabe
  • Kaoru Yamamoto
  • Chie Tsutsumi
  • Wataru Shinohara
  • Noriaki Murakami
  • Masahiro Kato
Short Communication

Abstract

The feasibility of later-generation hybrid production in ferns has not been previously studied, although it is a significant factor in relation to reproductive isolation. Osmunda × intermedia, a hybrid between O. japonica and O. lancea, is semifertile and has moderate spore germination rates. Under the artificial conditions of this study, F2 and F3 offspring were formed. Some of the F2 offspring showed precocity, and some of the F3 offspring also showed precocity. This fertility suggests that introgressive hybridization might be ongoing in nature. This also indicates a currently unknown genetic control over the timing of fertile frond production in Osmunda.

Keywords

Introgression Osmunda Hybrid fertility Precocity 

References

  1. Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1417CrossRefPubMedGoogle Scholar
  2. Baker M, Wolf PG (2010) Unfurling fern biology in the genomics age. Bioscience 60:177–185CrossRefGoogle Scholar
  3. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797CrossRefPubMedGoogle Scholar
  4. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83CrossRefPubMedGoogle Scholar
  5. Chen L, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence Development. Plant Cell 9:2011–2024CrossRefPubMedGoogle Scholar
  6. Gottlieb LD (1972) Levels of confidence in analysis of hybridization in plants. Ann Mo Bot Gard 59:435–446CrossRefGoogle Scholar
  7. Haung MD, Yang CH (1998) EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development. Plant Cell Physiol 39:382–393PubMedGoogle Scholar
  8. Heiser CB (1973) Introgression re-examined. Bot Rev 39:347–366CrossRefGoogle Scholar
  9. Hennipman E (1977) A monograph of the fern genus Bolbitis (Lomariopsidaceae). Leiden University Press, LeidenGoogle Scholar
  10. Hennipman E (1978) Lomariopsis group. In: Noteboom HP (ed) Flora Malesiana, vol 1. National Herbarium Nederland, Leiden, pp 255–330Google Scholar
  11. Hey J, Won YJ, Sivasundar A, Nielsen R, Markert JA (2004) Using nuclear haplotypes with microsatellites to study gene flow between recently separated Cichlid species. Mol Ecol 13:909–919CrossRefPubMedGoogle Scholar
  12. Imaichi R, Kato M (1992) Comparative leaf development of Osmunda lancea and O. japonica (Osmundaceae): heterochronic origin of rheophytic stenophylly. Bot Mag Tokyo 105:199–213CrossRefGoogle Scholar
  13. Iwatsuki K (1992) Ferns and fern allies of Japan. Heibonsha, TokyoGoogle Scholar
  14. Kawakami S, Kondo K, Kawakami K (2010) Reticulate evolution of the hybrid produced artificially by crosses between Osmunda banksiifolia and O. lancea. J Plant Res 123:639–644Google Scholar
  15. Klekowski EJ Jr (1968) Reproductive biology of the Pteridophyta. II. Theoretical considerations. Bot J Lin Soc 62:347–359CrossRefGoogle Scholar
  16. Knobloch IW (1976) Pteridophyte hybrids. Publ Mus Michigan State Univ, Biol Ser 5:273–352Google Scholar
  17. Knobloch IW, Gibby M, Fraser-Jenkins C (1984) Recent advances in our knowledge of pteridophyte hybrids. Taxon 33:256–270CrossRefGoogle Scholar
  18. Lexer C, Kremer A, Petit RJ (2006) Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012CrossRefPubMedGoogle Scholar
  19. Matsumoto S (2003) Species ecological study on reproductive systems and speciation of Cyrtomium falcatum complex (Dryopteridaceae) in Japanese archipelago. Ann Tsukuba Bot Gard 22:1–141Google Scholar
  20. McGonigle B, Bouhidel K, Irish VF (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10:1812–1821CrossRefPubMedGoogle Scholar
  21. Metzgar JS, Skog JE, Zimmer EA, Pryer KM (2008) The paraphyly of Osmunda is confirmed by phylogenetic analyses of seven plastid loci. Syst Bot 33:31–36CrossRefGoogle Scholar
  22. Mitsuta S (1977) Evolution of simple fronds in Cyrtomium—a pattern morphological study. Acta Phytotax Geobot 28:131–142Google Scholar
  23. Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561CrossRefPubMedGoogle Scholar
  24. Ohwi J (1957) Flora of Japan. Pteridophyta, Shibundo, TokyoGoogle Scholar
  25. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–1108CrossRefPubMedGoogle Scholar
  26. Rieseberg LH, Wendel J (1993) Introgression and its consequences in plants. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–114Google Scholar
  27. Rieseberg LH, Whitton J, Linder CR (1996) Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Bot Neerl 45:243–262Google Scholar
  28. Shimura Y (1964) Observations on the fertile fronds of Osmunda lancea var. latipinnula. J Jpn Bot 39:242–246Google Scholar
  29. Shimura Y (1972) Study of reproduction of Osmunda × intermedia Sugimoto. J Geobot 20:38–42Google Scholar
  30. Shimura Y, Matsumoto S (1977) On the chromosome association in meiosis of Osmunda × intermedia. J Jpn Bot 52:377–378Google Scholar
  31. Staut SC, Clark GB, Archer-Evans SA, Roux SJ (2003) Rapid and efficient suppression of gene expression in a single-cell model system, Ceratopteris richardii. Plant Physiol 131:1165–1168CrossRefGoogle Scholar
  32. Tagawa M (1959) Colored illustrations of the Japanese Pteridophyta. Hoikusha, OsakaGoogle Scholar
  33. Tatuno S, Yoshida H (1966) Karyologishe untersuchungen über Osmudaceae I. chromosomen der gattung Osmunda aus Japan. Bot Mag Tokyo 79:244–252Google Scholar
  34. Van Steennis CGGJ (1981) Rheophytes of the World. Sijthoff and Noordhoff, Alphen aan den RijnGoogle Scholar
  35. Van Steennis CGGJ (1987) Rheophytes of the world: supplement. Allertonia 4:267–330Google Scholar
  36. Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695CrossRefPubMedGoogle Scholar
  37. Yamauchi D, Sutoh K, Kanegae H, Horiguchi T, Matsuoka K, Fukuda H, Wada M (2005) Analysis of expressed sequence tags in prothallia of Adiantum capillus-veneris. J Plant Res 118:223–227CrossRefPubMedGoogle Scholar
  38. Yatabe Y, Nishida H, Murakami N (1999) Phylogeny of Osmundaceae inferred from rbcL nucleotide sequences and comparison to the fossil Evidence. J Plant Res 112:397–404CrossRefGoogle Scholar
  39. Yatabe Y, Tsutsumi C, Hirayama Y, Mori K, Murakami N, Kato M (2009) Genetic population structure of Osmunda japonica, rheophilous Osmunda lancea and their hybrids. J Plant Res 122:585–595CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  • Yoko Yatabe
    • 1
  • Kaoru Yamamoto
    • 3
  • Chie Tsutsumi
    • 2
  • Wataru Shinohara
    • 4
  • Noriaki Murakami
    • 3
  • Masahiro Kato
    • 2
  1. 1.Botanical Gardens, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Department of BotanyNational Museum of Nature and ScienceTsukubaJapan
  3. 3.Makino HerbariumTokyo Metropolitan UniversityHachiojiJapan
  4. 4.Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations