Journal of Plant Research

, Volume 124, Issue 1, pp 93–97 | Cite as

Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium

  • Takuro Nakayama
  • Yuko Ikegami
  • Takeshi Nakayama
  • Ken-ichiro Ishida
  • Yuji InagakiEmail author
  • Isao Inouye
Short Communication


Members of the diatom family Rhopalodiaceae possess cyanobacteria-derived intracellular structures called spheroid bodies (SBs) that very likely carry out nitrogen fixation. Due to the shortage of molecular data from SBs and rhopalodiacean diatoms, it remains unclear how SBs were established and spread in rhopalodiacean diatoms. We here amplified the small subunit ribosomal DNA sequences from both host and SB in three rhopalodiacean diatom species, Epithemia turgida, E. sorex, and Rhopalodia gibba. Phylogenetic analyses considering these new sequences clearly indicate that the SBs were acquired by a common ancestor of rhopalodiacean diatoms and have been retained during host speciation.


Nitrogen fixation Endosymbiosis Organelle Cyanobacteria Diatoms 



We would like to thank Haruka Kogure and Yoshihisa Hirakawa (University of Tsukuba) for kindly providing a sample of Saiko and valuable help with laboratory works, respectively. Takuro Nakayama is supported by a JSPS Research Fellowship for Young Scientists (DC1). YI is supported by a grant from JSPS (no. 21370031).

Supplementary material

10265_2010_355_MOESM1_ESM.doc (35 kb)
Table S1 (DOC 35 kb)


  1. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229CrossRefGoogle Scholar
  2. Carpenter EJ, Janson S (2000) Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (Bacillariophyceae). J Phycol 36:540–544CrossRefGoogle Scholar
  3. DeYoe HR, Lowe RL, Marks JC (1992) Effects of nitrogen and phosphorus on the endosymbiont load of Rhopalodia gibba and Epithemia turgida (Bacillariophyceae). J Phycol 28:773–777CrossRefGoogle Scholar
  4. Drum RW, Pankratz S (1965) Fine structure of an unusual cytoplasmic inclusion in the diatom genus, Rhopalodia. Protoplasma 60:141–149CrossRefGoogle Scholar
  5. Geitler L (1977) Zur Entwicklungsgeschichte der Epithemiaceen Epithemia, Rhopalodia und Denticula (Diatomophyceae) und ihre vermutlich symbiontischen Sphäroidkörper. Plant Syst Evol 128:259–275CrossRefGoogle Scholar
  6. Hajos M (1986) Stratigraphy of Hungary’s Miocene diatomaceous earth deposits. Geologica Hungarica Series Palaeontologica 49:1–339Google Scholar
  7. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  8. Janson S, Rai AN, Bergman B (1995) Intracellular cyanobiont Richelia intracellularis: ultrastructure and immuno-localization of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Mar Biol 124:1–8CrossRefGoogle Scholar
  9. Kies L (1992) Glaucocystophyceae and other protists harbouring prokaryotic endocytobionts. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 353–377Google Scholar
  10. Kneip C, Lockhart P, Voss C, Maier UG (2007) Nitrogen fixation in eukaryotes—new models for symbiosis. BMC Evol Biol 7:55CrossRefPubMedGoogle Scholar
  11. Kneip C, Voss C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30CrossRefPubMedGoogle Scholar
  12. Nakayama T, Ishida K (2009) Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol 19:R284–R285CrossRefPubMedGoogle Scholar
  13. Nakayama T, Marin B, Kranz HD, Surek B, Huss VAR, Inouye I, Melkonian M (1998) The basal position of scaly green flagellates among the green algae (Chlorophyta) is revealed by analyses of nuclear-encoded SSU rRNA sequences. Protist 149:367–380CrossRefGoogle Scholar
  14. Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481CrossRefPubMedGoogle Scholar
  15. Round FE, Crawford RM, Mann DG (1990) The diatoms. Cambridge University Press, CambridgeGoogle Scholar
  16. Simonsen R (1979) The diatom system: ideas on phylogeny. Bacillaria 2:9–71Google Scholar
  17. Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402CrossRefGoogle Scholar
  18. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  19. Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida K, Bhattacharya D (2009) A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol 9:98CrossRefPubMedGoogle Scholar
  20. Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–638CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  • Takuro Nakayama
    • 1
  • Yuko Ikegami
    • 1
  • Takeshi Nakayama
    • 1
  • Ken-ichiro Ishida
    • 1
  • Yuji Inagaki
    • 2
    Email author
  • Isao Inouye
    • 1
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Center of Computational Sciences and Institute of Biological SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations