Journal of Plant Research

, Volume 124, Issue 1, pp 49–62 | Cite as

Taxonomy of Nephroselmis viridis sp. nov. (Nephroselmidophyceae, Chlorophyta), a sister marine species to freshwater N. olivacea

  • Haruyo Yamaguchi
  • Shoichiro Suda
  • Takeshi Nakayama
  • Richard N. Pienaar
  • Mitsuo Chihara
  • Isao InouyeEmail author
Regular Paper


The genus Nephroselmis (Nephroselmidophyceae), which had been placed in the Prasinophyceae, is one of the primitive green flagellates that are important to our understanding of the early evolution of green plants. We studied a new species of Nephroselmis isolated from Japan, Fiji and South Africa. This species has been known for a long time as undescribed species ‘N. viridis.N. viridis possesses some ultrastructural characters shared with only the freshwater type species N. olivacea, including a disc-like structure beneath the pyrenoid and bipolar spiny body scales with 1-5-8-5-1 spines. Molecular phylogenetic analysis based on 18S rDNA also supports a sister relationship between N. viridis and N. olivacea. However, N. viridis is distinguishable from N. olivacea by the shape of its starch sheath, its scales, its pigment composition and its habitat. In this paper, we designate the formal description of N. viridis sp. nov. We also describe variability in the 18S rDNA introns of various N. viridis strains. This detailed study of N. viridis provides some insights into the evolution of Nephroselmis.


18S rDNA Intron Nephroselmis viridis Phylogeny Prasinophyceae Ultrastructure 



The initial stage of this work was done at the National Institute for Environmental Studies (NIES), Tsukuba, Japan. II is most grateful to Prof. Makoto M. Watanabe for providing an opportunity to stay and work in his laboratory at NIES. RNP warmly acknowledges the help of the staff of the Electron Microscope Unit of the Witwatersrand. This study was financially supported in part by a Grant-in-Aid for Scientific Research, Japan and the National Research Foundation, South Africa.

Supplementary material

10265_2010_349_MOESM1_ESM.pdf (867 kb)
Supplementary material 1 (PDF 867 kb)


  1. Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group I introns. Nucleic Acids Res 15:7217–7221CrossRefPubMedGoogle Scholar
  2. Butcher RW (1959) An introductory account of the smaller algae of British coastal waters Part I. Introduction and Chlorophyceae. Fish Investig 4:1–74Google Scholar
  3. Carter N (1937) New or interesting algae from brackish water. Arch Protistenk 90:1–68Google Scholar
  4. Cavalier-Smith T (1993) The origin, losses and gains of chloroplast. In: Lewin RE (ed) Origin of plastid: symbiogenesis prochlorophytes and the origins of chloroplast. Chapman and Hall, New York, pp 291–348Google Scholar
  5. Côté MJ, Prud’homme M, Meldrum AJ, Tardif M-C (2004) Variations in sequence and occurrence of SSU rDNA group I introns in Monilinia fructicola isolates. Mycologia 96:240–248CrossRefPubMedGoogle Scholar
  6. Ettl H, Moestrup Ø (1980) Light and electron microscopical studies on Hafniomonas gen nov. (Chlorophyceae, Volvocales), a genus resembling Pyramimonas (Prasinophyceae). Plant Syst Evol 135:177–210CrossRefGoogle Scholar
  7. Fawley MW, Yun Y, Qin M (2000) Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the Prasinophyceae (Chlorophyta). J Phycol 36:387–393CrossRefGoogle Scholar
  8. Guillou L, Eikrem W, Chrétiennot-Dinet M-J, Le Gall F, Massana R, Romari K, Pedrós-Alió C, Vaulot D (2004) Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155:193–214CrossRefPubMedGoogle Scholar
  9. Hansen G, Moestrup Ø (1998) Fine-structural characterization of Alexandrium catenella (Dinophyceae) with special emphasis on the flagellar apparatus. Eur J Phycol 33:281–291CrossRefGoogle Scholar
  10. Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119CrossRefPubMedGoogle Scholar
  11. Hoffman LR (1967) Observations on the fine structure of Oedogonium III. Microtubular element in the chloroplast of Oe. cardiacum. J Phycol 3:212–221CrossRefGoogle Scholar
  12. Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94:273–285PubMedGoogle Scholar
  13. Honda D, Inouye I (1995) Ultrastructure and reconstruction of the flagellar apparatus architecture in Ankylochrysis lutea (Chrysophyceae, Sarcinochrysidales). Phycologia 34:215–227CrossRefGoogle Scholar
  14. Hori T, Inouye I, Horiguchi T, Boalch GT (1985) Observations on the motile stage of Halosphaera minor Ostenfeld (Prasinophyceae) with special reference to the cell structure. Bot Mar 28:529–538CrossRefGoogle Scholar
  15. Hori T, Moestrup Ø, Hoffman LR (1995) Fine structural studies on an ultraplanktonic species of Pyramimonas, P virginica (Prasinophyceae), with a discussion of subgenera within the genus Pyramimonas. Eur J Phycol 30:219–234CrossRefGoogle Scholar
  16. Inouye I, Hori T (1991) High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma 164:54–69CrossRefGoogle Scholar
  17. Inouye I, Pienaar RN (1984) Light and electron microscope observations on Nephroselmis astigmatica sp nov. (Prasinophyceae). Nord J Bot 4:409–423CrossRefGoogle Scholar
  18. Inouye I, Hori T, Chihara M (1990) Absolute configuration analysis of the flagellar apparatus of Pterosperma cristatum (Prasinophyceae) and consideration of its phylogenetic position. J Phycol 26:329–344CrossRefGoogle Scholar
  19. Johansen S, Haugen P (2001) A new nomenclature of group I introns in ribosomal DNA. RNA 7:935–936CrossRefPubMedGoogle Scholar
  20. Kasai F, Kawachi M, Erata M, Mori F, Yumoto K, Sato M, Ishimoto M (2009) NIES-collection. List of strains, 8th edn. Jpn J Phycol (Sôrui) 57(Suppl):1–350Google Scholar
  21. Lechtreck KF, Melkonian M (1991) An update on fibrous flagellar roots in green algae. Protoplasma 164:38–44CrossRefGoogle Scholar
  22. Manton I, Rayns DG, Ettl H, Parke M (1965) Further observations on green flagellates with scaly flagella: the genus Heteromastix Korschikov. J Mar Biol Assoc UK 45:241–255CrossRefGoogle Scholar
  23. Marin B, Melkonian M (1994) Flagellar hairs in prasinophytes (Chlorophyta): ultrastructure and distribution on the flagellar surface. J Phycol 30:659–678CrossRefGoogle Scholar
  24. Marin B, Melkonian M (1999) Mesostigmatophyceae, a new class of streptophyte green algae revealed by SSU rRNA sequence comparisons. Protist 150:399–417CrossRefPubMedGoogle Scholar
  25. Marin B, Melkonian M (2009) Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist. doi: 10.1016/j.protis.2009.10.002
  26. Massjuk NP (2006) Chlorodendrophyceae class nov. (Chlorophyta, Viridiplantae) in the Ukrainian flora: I. The volume, phylogenetic relations and taxonomical status. Ukr Bot J 63:601–614Google Scholar
  27. Melkonian M (1980) Ultrastructural aspects of basal body associated fibrous structures in green algae: a critical review. BioSystems 12:85–104CrossRefPubMedGoogle Scholar
  28. Melkonian M (1984) Flagellar apparatus ultrastructure in relation to green algal classification. In: Irvine DE, John DM (eds) Systematics of the green algae. Academic Press, New York, pp 73–120Google Scholar
  29. Melkonian M (1989) Flagellar apparatus ultrastructure in Mesostigma viride (Prasinophyceae). Plant Syst Evol 164:93–122CrossRefGoogle Scholar
  30. Melkonian M (1990) Phylum Chlorophyta: Class Prasinophyceae. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, London, pp 600–607Google Scholar
  31. Melkonian M, Reize IB, Preisig HR (1987) Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies on Nephroselmis olivacea (Prasinophyceae). In: Wiessner W, Robinson DG, Starr RC (eds) Algal development, molecular and cellular aspects. Springer, Berlin, pp 102–113Google Scholar
  32. Moestrup Ø (1978) On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll a and b containing plants. Biosystems 10:117–144CrossRefPubMedGoogle Scholar
  33. Moestrup Ø (1983) Further studies on Nephroselmis and its allies (Prasinophyceae) I. The question of the genus Bipedinomonas. Nord J Bot 3:609–627CrossRefGoogle Scholar
  34. Moestrup Ø (1984) Further studies on Nephroselmis and its allies (Prasinophyceae) II. Mamiella gen. nov., Mamiellaceae fam. nov., Mamiellales ord. nov. Nord J Bot 4:109–121CrossRefGoogle Scholar
  35. Moestrup Ø (1992) Prasinophyceae og andre grønne flagellater. In: Thomsen HA (ed) Havforskning fra Miljøstyrelsen. Nr. 11 Plankton I de indre danske farvande. Miljøstyrelsen, København, pp 267–310Google Scholar
  36. Moestrup Ø (2000) The flagellar cytoskeleton. Introduction of a general terminology for microtubular flagellar roots in protists. In: Leadbeater BSC, Green JC (eds) The flagellates unity diversity and evolution. Taylor & Francis, London, pp 69–94Google Scholar
  37. Moestrup Ø, Ettl H (1979) A light and electron microscopical study of Nephroselmis olivacea (Prasinophyceae). Opera Bot 49:1–40Google Scholar
  38. Moestrup Ø, Hori T (1989) Ultrastructure of the flagellar apparatus of in Pyramimonas octopus (Prasinophyceae) II. Flagellar roots, connecting fibers and numbering of individual flagella in green algae. Protoplasma 148:41–56CrossRefGoogle Scholar
  39. Moestrup Ø, Throndsen J (1988) Light and electron microscopical studies on Pseudoscourfieldia marina, a primitive scaly green flagellate (Prasinophyceae) with posterior flagella. Can J Bot 66:1415–1434CrossRefGoogle Scholar
  40. Nakada T, Suda S, Nozaki H (2007) A taxonomic study of Hafniomonas (Chlorophyceae) based on a comparative examination of cultured material. J Phycol 43:397–411CrossRefGoogle Scholar
  41. Nakayama T, Inouye I (2000) Ultrastructure of the biflagellate gametes of Collinsiella cava (Ulvophyceae, Chlorophyta). Phycol Res 48:63–73CrossRefGoogle Scholar
  42. Nakayama T, Marin B, Krantz HD, Surek B, Huss VAR, Inouye I, Melkonian M (1998) The basal position of scaly green flagellates among the green algae (Chlorophyta) is revealed by analyses of nuclear-encoded SSU rRNA sequences. Protist 149:367–380CrossRefGoogle Scholar
  43. Nakayama T, Kawachi M, Inouye I (2000) Taxonomy and the phylogenetic position of a new prasinophycean alga, Crustomastix didyma gen and sp. nov. (Chlorophyta). Phycologia 39:337–348CrossRefGoogle Scholar
  44. Nakayama T, Suda S, Kawachi M, Inouye I (2007) Phylogeny and ultrastructure of Nephroselmis and Pseudoscourfieldia (Chlorophyta), including the description of Nephroselmis anterostigmatica sp nov. and a proposal for the Nephroselmidales ord. nov. Phycologia 46:680–697CrossRefGoogle Scholar
  45. Perotto S, Nepote-Fus P, Saletta L, Bandi C, Young JPW (2000) A diverse population of introns in the nuclear ribosomal genes of ericoid mycorrhizal fungi includes endonuclease-coding genes. Mol Biol Evol 17:44–59PubMedGoogle Scholar
  46. Pickett-Heaps JD (1968) Ultrastructure and differentiation in Chara (fibrosa) IV. Spermatogenesis. Aust J Biol Sci 21:655–690Google Scholar
  47. Pickett-Heaps JD, Fowke LR (1970) Mitosis, cytokinesis, and cell elongation in the desmid Closterium littorale. J Phycol 6:189–215Google Scholar
  48. Reynolds EC (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedGoogle Scholar
  49. Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb Bot Ups 9:1–399Google Scholar
  50. Sluiman HJ (1983) The flagellar apparatus of the zoospore of the filamentous green alga Coleochaete pulvinata: absolute configuration and phylogenetic significance. Protoplasma 115:160–175CrossRefGoogle Scholar
  51. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–42CrossRefPubMedGoogle Scholar
  52. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  53. Steinkötter J, Bhattacharya D, Semmelroth I, Bibeau C, Melkonian M (1994) Prasinophytes form independent lineages within the Chlorophyta: evidence from ribosomal RNA sequence comparisons. J Phycol 30:340–345CrossRefGoogle Scholar
  54. Suda S (2003) Light microscopy and electron microscopy of Nephroselmis spinosa sp. nov. (Prasinophyceae, Chlorophyta). J Phycol 39:590–599CrossRefGoogle Scholar
  55. Suda S, Watanabe MM, Inouye I (1989) Evidence for sexual reproduction in the primitive green alga Nephoroselmis olivacea (Prasinophyceae). J Phycol 25:596–600CrossRefGoogle Scholar
  56. Suda S, Watanabe MM, Inouye I (2004) Electron microscopy of sexual reproduction in Nephroselmis olivacea (Prasinophyceae, Chlorophyta). Phycol Res 52:273–283CrossRefGoogle Scholar
  57. Sym SD, Pienaar RN (1991) Light and electron microscopy of a punctate species of Pyramimonas, P. mucifera sp. nov. (Prasinophyceae). J Phycol 27:277–290CrossRefGoogle Scholar
  58. Sym SD, Pienaar RN (1993) The class Prasinophyceae. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 9. Biopress Ltd., Bristol, pp 281–376Google Scholar
  59. Sym SD, Pienaar RN (1997) Further observations on the type subgenus of Pyramimonas (Prasinophyceae), with particular reference to a new species, P. chlorina, and the flagellar apparatus of P. propulsa. Can J Bot 75:2196–2215CrossRefGoogle Scholar
  60. Tseng CK, Chen J, Zhang Z, Zhang H (1994) Light and electron microscope observations on Nephroselmis gaoae sp nov. (Prasinophyceae). Chin J Oceanol Limnol 12:201–207CrossRefGoogle Scholar
  61. Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648CrossRefPubMedGoogle Scholar
  62. Viprey M, Guillou L, Ferréol M, Vaulot D (2008) Wide genetic diversity of picophytoplnaktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ Microbiol 10:1804–1822CrossRefPubMedGoogle Scholar
  63. Yamaguchi H, Nakayama T, Murakami A, Inouye I (2010) Phylogeny and taxonomy of the Raphidophyceae (Heterokontophyta) and Chlorinimonas sublosa gen. et sp. nov., a new marine sand-dwelling raphidophyte. J Plant Res 123:333–342Google Scholar
  64. Yoshii Y, Takaichi S, Maoka T, Suda S, Sekiguchi H, Nakayama T, Inouye I (2005) Variation of siphonaxanthin series among the genus Nephroselmis (Prasinophyceae, Chlorophyta), including a novel primary methoxy carotenoid. J Phycol 41:827–834CrossRefGoogle Scholar
  65. Young AV, Pienaar RN (1989) The ultrastructure of a new species of Nephroselmis (Prasinophyceae). Proc Electron Microsc Soc South Afr 19:113–114Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  • Haruyo Yamaguchi
    • 1
  • Shoichiro Suda
    • 2
  • Takeshi Nakayama
    • 1
  • Richard N. Pienaar
    • 3
  • Mitsuo Chihara
    • 1
  • Isao Inouye
    • 1
    Email author
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Department of Chemistry, Biology and Marine ScienceUniversity of the RyukyusNishiharaJapan
  3. 3.School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburg, WITS 2050South Africa

Personalised recommendations