Skip to main content
Log in

Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Cytogeographical variability among 564 plants from 26 populations of Turnera sidoides subsp. pinnatifida in mountain ranges of central Argentina was analysed with meiotic chromosome counts and flow cytometry and is described at regional and local scales. Populations were primarily tetraploids (2n = 4x = 28), although diploid (2n = 2x = 14), hexaploid (2n = 2x = 42), and mixed populations of diploids and triploids (2n = 3x = 21) were also found. Diploids, triploids, and hexaploids were fewer in number and restricted to narrow areas, while tetraploids were the most common and geographically widespread cytotype. Diploids grew at higher altitudes and in colder and wet locations; tetraploids had the broadest ecological spectrum, while hexaploids occurred at the lowest altitudes and in drier conditions. The cytotypes were also spatially segregated at a microgeographical scale. Diploids grew in the piedmont, tetraploids were in the adjacent valley, and in the contact zone of both cytotypes, patches of diploids and triploids were found. At a regional scale, the distribution of the cytotypes may be governed by a combination of ecological and historical variables, while segregation in the contact zone may be independent of the selective environment because the cytotypes are unable to coexist as a result of reproductive exclusion. The role of triploids is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ab′Sáber AN (1977) Space occupied by the expansion of dry climates in South America during the Quaternary glacial periods (in Portuguese). Paleoclimas 3:1–19

    Google Scholar 

  • Arbo MM (1985) Taxonomic notes in South American Turneraceae (in Spanish). Candollea 40:175–191

    Google Scholar 

  • Arbo MM (1987) Turneraceae. In: Spichiger R (ed) Flora del Paraguay, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, pp 1–65

  • Benítez-Vieyra S, Hempel de Ibarra N, Wertlen AM, Cocucci AA (2007) How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae. Philos Trans R Soc Lond B Biol Sci 274:2239–2248

    Article  Google Scholar 

  • Bennett MD (2004) Perspectives on polyploidy in plants-ancient and neo. Biol J Linn Soc 82:411–423

    Article  Google Scholar 

  • Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technol 31:87–90

    CAS  PubMed  Google Scholar 

  • Elías G, Solís Neffa VG (2008) Cytogenetic studies in triploids from a contact zone of diploid and tetraploid of Turnera sidoides subsp. pinnatifida (in Spanish). BAG XIX (Supplement):107–108

  • Fernández A (1973) The lactic acid as chromosome fixer (in Spanish). Bol Soc Argent Bot 15:287–290

    Google Scholar 

  • Fernández A (1987) Chromosome studies in Turnera and Piriqueta (Turneraceae) (in Spanish). Bonplandia 6:1–21

    Google Scholar 

  • Fowler NL, Levin DA (1984) Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Nat 124:703–711

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Barrantes I, Rojas E (2004) DIVA-GIS. http:\\www.diva-gis.org

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota) Global Ecol Biogeogr. doi:10.1111/j.1466-8238.2007.00308.x

  • Husband BC (2000) Constraints on polyploidy evolution: a test of the minority cytotype exclusion principle. Philos Trans R Soc Lond B Biol Sci 267:217–223

    Article  CAS  Google Scholar 

  • Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694

    Article  Google Scholar 

  • InfoStat (2008) InfoStat, version 2008. Grupo InfoStat, FCA. National University of Córdoba, Argentina

    Google Scholar 

  • Iriondo MH, García NO (1993) Climatic variations in the Argentine plains during the last 18.000 years. Palaeogeogr Palaeoclimatol Palaeoecol 101:209–220

    Article  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plants populations. Taxon 24:35–43

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosome change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Lewis WH (1980) Polyploidy in species population. In: Lewis WH (ed) Polyploidy, biological relevance. Plenum Press, New York

    Google Scholar 

  • Lumaret R, Guillerm JL, Delay J, Ait lhaj Loutfi A, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73:436–446

    Article  Google Scholar 

  • Luti R, Solís M, Galera F, Ferreira N, Nores M, Herrera M, Barrera JC (1979) Vegetation. In: Vázquez JB, Matiello R, Roque M (eds) Physical geography of Córdoba Province (in Spanish). Bold, Córdoba, pp 297–368

    Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423

    Article  CAS  PubMed  Google Scholar 

  • McArthur ED, Sanderson SC (1999) Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Am J Bot 86:1754–1775

    Article  PubMed  Google Scholar 

  • Pannell JR, Obbard DJ, Buggs RJ (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 2:547–560

    Article  Google Scholar 

  • Panseri AF, Seijo JG, Solís Neffa VG (2008) Analysis of the production and frequency of unreduced microspores in diploids of Turnera sidoides (Turneraceae) (in Spanish). Bol Soc Argent Bot 43:95–101

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Solís Neffa VG (2000) Biosystematic studies in Turnera sidoides L. complex (Turneraceae, Leiocarpae) (in Spanish). PhD Thesis, National University of Córdoba, Argentina

  • Solís Neffa VG, Fernández A (2001) Cytogeography of the Turnera sidoides L. complex (Turneraceae, Leiocarpae). Bot J Linn Soc 137:189–196

    Google Scholar 

  • Solís Neffa VG, Fernández A (2002) Karyotypic studies in Turnera sidoides complex (Turneraceae, Leiocarpae). Am J Bot 89:551–558

    Article  Google Scholar 

  • Solís Neffa VG, Panseri AF, Reynoso W, Seijo JG (2004) Flower colour variation and chromosome numbers in the north western distributional area of Turnera sidoides (Turneraceae) (in Spanish). Bonplandia 13:117–128

    Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Speranza PR, Seijo JG, Grela IA, Solís Neffa VG (2007) Chloroplast DNA variation in the Turnera sidoides L. complex (Turneraceae): biogeographical implications. J Biogeogr 34:427–436

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, London

    Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3–S14

    Article  Google Scholar 

  • van Dijk P, Hartog M, van Delden W (1992) Single cytotype areas in autopolyploid Plantago media L. Biol J Linn Soc 116:315–331

    Google Scholar 

  • van Dijk P, Bakx-Schotman T (1997) Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol Ecol 6:345–352

    Article  Google Scholar 

  • Wentworth JE, Gornall RJ (1996) Cytogenetic evidence for autopolyploidy in Parnassia palustris. New Phytol 134:641–648

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants from the Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT-FONCyT, PICT 01-14674, PICTO 07-90), CONICET (PIP 5998) and Secretaría General de Ciencia y Técnica (UNNE, PI-013/04). G. Elías and M. Sartor are Doctoral Fellows of the National Research Council of Argentina (CONICET), and V. G. Solís Neffa is a member of the Carrera del Investigador Científico of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana G. Solís Neffa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elías, G., Sartor, M. & Solís Neffa, V.G. Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina. J Plant Res 124, 25–34 (2011). https://doi.org/10.1007/s10265-010-0347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0347-0

Keywords

Navigation