Advertisement

Journal of Plant Research

, Volume 124, Issue 1, pp 25–34 | Cite as

Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina

  • Gabriela Elías
  • María Sartor
  • Viviana G. Solís Neffa
Regular Paper

Abstract

Cytogeographical variability among 564 plants from 26 populations of Turnera sidoides subsp. pinnatifida in mountain ranges of central Argentina was analysed with meiotic chromosome counts and flow cytometry and is described at regional and local scales. Populations were primarily tetraploids (2n = 4x = 28), although diploid (2n = 2x = 14), hexaploid (2n = 2x = 42), and mixed populations of diploids and triploids (2n = 3x = 21) were also found. Diploids, triploids, and hexaploids were fewer in number and restricted to narrow areas, while tetraploids were the most common and geographically widespread cytotype. Diploids grew at higher altitudes and in colder and wet locations; tetraploids had the broadest ecological spectrum, while hexaploids occurred at the lowest altitudes and in drier conditions. The cytotypes were also spatially segregated at a microgeographical scale. Diploids grew in the piedmont, tetraploids were in the adjacent valley, and in the contact zone of both cytotypes, patches of diploids and triploids were found. At a regional scale, the distribution of the cytotypes may be governed by a combination of ecological and historical variables, while segregation in the contact zone may be independent of the selective environment because the cytotypes are unable to coexist as a result of reproductive exclusion. The role of triploids is also discussed.

Keywords

Cytogeography Cytotype Contact zone Flow cytometry Ploidy level Polyploidy Central Argentina 

Notes

Acknowledgments

This research was partially supported by grants from the Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT-FONCyT, PICT 01-14674, PICTO 07-90), CONICET (PIP 5998) and Secretaría General de Ciencia y Técnica (UNNE, PI-013/04). G. Elías and M. Sartor are Doctoral Fellows of the National Research Council of Argentina (CONICET), and V. G. Solís Neffa is a member of the Carrera del Investigador Científico of CONICET.

References

  1. Ab′Sáber AN (1977) Space occupied by the expansion of dry climates in South America during the Quaternary glacial periods (in Portuguese). Paleoclimas 3:1–19Google Scholar
  2. Arbo MM (1985) Taxonomic notes in South American Turneraceae (in Spanish). Candollea 40:175–191Google Scholar
  3. Arbo MM (1987) Turneraceae. In: Spichiger R (ed) Flora del Paraguay, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, pp 1–65Google Scholar
  4. Benítez-Vieyra S, Hempel de Ibarra N, Wertlen AM, Cocucci AA (2007) How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae. Philos Trans R Soc Lond B Biol Sci 274:2239–2248CrossRefGoogle Scholar
  5. Bennett MD (2004) Perspectives on polyploidy in plants-ancient and neo. Biol J Linn Soc 82:411–423CrossRefGoogle Scholar
  6. Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technol 31:87–90PubMedGoogle Scholar
  7. Elías G, Solís Neffa VG (2008) Cytogenetic studies in triploids from a contact zone of diploid and tetraploid of Turnera sidoides subsp. pinnatifida (in Spanish). BAG XIX (Supplement):107–108Google Scholar
  8. Fernández A (1973) The lactic acid as chromosome fixer (in Spanish). Bol Soc Argent Bot 15:287–290Google Scholar
  9. Fernández A (1987) Chromosome studies in Turnera and Piriqueta (Turneraceae) (in Spanish). Bonplandia 6:1–21Google Scholar
  10. Fowler NL, Levin DA (1984) Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Nat 124:703–711CrossRefGoogle Scholar
  11. Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Barrantes I, Rojas E (2004) DIVA-GIS. http:\\www.diva-gis.org
  12. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  13. Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota) Global Ecol Biogeogr. doi: 10.1111/j.1466-8238.2007.00308.x
  14. Husband BC (2000) Constraints on polyploidy evolution: a test of the minority cytotype exclusion principle. Philos Trans R Soc Lond B Biol Sci 267:217–223CrossRefGoogle Scholar
  15. Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694CrossRefGoogle Scholar
  16. InfoStat (2008) InfoStat, version 2008. Grupo InfoStat, FCA. National University of Córdoba, ArgentinaGoogle Scholar
  17. Iriondo MH, García NO (1993) Climatic variations in the Argentine plains during the last 18.000 years. Palaeogeogr Palaeoclimatol Palaeoecol 101:209–220CrossRefGoogle Scholar
  18. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189CrossRefGoogle Scholar
  19. Levin DA (1975) Minority cytotype exclusion in local plants populations. Taxon 24:35–43CrossRefGoogle Scholar
  20. Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25CrossRefGoogle Scholar
  21. Levin DA (2002) The role of chromosome change in plant evolution. Oxford University Press, New YorkGoogle Scholar
  22. Lewis WH (1980) Polyploidy in species population. In: Lewis WH (ed) Polyploidy, biological relevance. Plenum Press, New YorkGoogle Scholar
  23. Lumaret R, Guillerm JL, Delay J, Ait lhaj Loutfi A, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73:436–446CrossRefGoogle Scholar
  24. Luti R, Solís M, Galera F, Ferreira N, Nores M, Herrera M, Barrera JC (1979) Vegetation. In: Vázquez JB, Matiello R, Roque M (eds) Physical geography of Córdoba Province (in Spanish). Bold, Córdoba, pp 297–368Google Scholar
  25. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423CrossRefPubMedGoogle Scholar
  26. McArthur ED, Sanderson SC (1999) Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Am J Bot 86:1754–1775CrossRefPubMedGoogle Scholar
  27. Pannell JR, Obbard DJ, Buggs RJ (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 2:547–560CrossRefGoogle Scholar
  28. Panseri AF, Seijo JG, Solís Neffa VG (2008) Analysis of the production and frequency of unreduced microspores in diploids of Turnera sidoides (Turneraceae) (in Spanish). Bol Soc Argent Bot 43:95–101Google Scholar
  29. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  30. Solís Neffa VG (2000) Biosystematic studies in Turnera sidoides L. complex (Turneraceae, Leiocarpae) (in Spanish). PhD Thesis, National University of Córdoba, ArgentinaGoogle Scholar
  31. Solís Neffa VG, Fernández A (2001) Cytogeography of the Turnera sidoides L. complex (Turneraceae, Leiocarpae). Bot J Linn Soc 137:189–196Google Scholar
  32. Solís Neffa VG, Fernández A (2002) Karyotypic studies in Turnera sidoides complex (Turneraceae, Leiocarpae). Am J Bot 89:551–558CrossRefGoogle Scholar
  33. Solís Neffa VG, Panseri AF, Reynoso W, Seijo JG (2004) Flower colour variation and chromosome numbers in the north western distributional area of Turnera sidoides (Turneraceae) (in Spanish). Bonplandia 13:117–128Google Scholar
  34. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352CrossRefPubMedGoogle Scholar
  35. Speranza PR, Seijo JG, Grela IA, Solís Neffa VG (2007) Chloroplast DNA variation in the Turnera sidoides L. complex (Turneraceae): biogeographical implications. J Biogeogr 34:427–436CrossRefGoogle Scholar
  36. Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, LondonGoogle Scholar
  37. Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3–S14CrossRefGoogle Scholar
  38. van Dijk P, Hartog M, van Delden W (1992) Single cytotype areas in autopolyploid Plantago media L. Biol J Linn Soc 116:315–331Google Scholar
  39. van Dijk P, Bakx-Schotman T (1997) Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol Ecol 6:345–352CrossRefGoogle Scholar
  40. Wentworth JE, Gornall RJ (1996) Cytogenetic evidence for autopolyploidy in Parnassia palustris. New Phytol 134:641–648CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  • Gabriela Elías
    • 1
  • María Sartor
    • 1
  • Viviana G. Solís Neffa
    • 1
    • 2
  1. 1.Instituto de Botánica del Nordeste (UNNE, CONICET)CorrientesArgentina
  2. 2.Facultad de Ciencias Agrarias (UNNE)CorrientesArgentina

Personalised recommendations