Advertisement

Journal of Plant Research

, Volume 123, Issue 6, pp 777–787 | Cite as

Comparative development of the sporophyte–gametophyte junction in six moss species

  • Mihoko Uzawa
  • Masanobu Higuchi
Regular Paper

Abstract

Developmental anatomy of the sporophyte–gametophyte junction in six moss species is described with special reference to sporophyte penetration into the gametophytic tissue. The sporophyte–gametophyte junction in mosses is classified into two types based on vaginula morphology: in the “true vaginula” type, the junction involves only an epigonium derived from the archegonium, and in the other “shoot vaginula” type, it involves a shoot and an epigonium. In both of the types, the sporophyte penetrates into an epigonial tissue accompanied by degeneration of epigonium cells under the developing sporophyte. In the “shoot vaginula” type, the sporophyte further penetrates into the conducting strand or similar cells that seem to be induced by stimulation of fertilization. It is likely that the difference in growth rate between the epigonium and the capped sporophyte is a mechanical force for sporophyte penetration.

Keywords

Bryophytes Development Mosses Placenta Sporophyte–gametophyte junction 

Notes

Acknowledgments

We express our thanks to Dr. M. Kato (National Museum of Nature and Science), Dr. R. Imaichi (Japan Women’s University), Dr. T. Yamashita (Ochanomizu University), Dr. M. Shimamura (Hiroshima University), Dr. T. Arikawa (Tottori Prefectural Museum), Dr. B. Estébanez (Universidad Complutense de Madrid), and members of National Museum of Nature and Science for helpful discussions and suggestions. We extend our appreciation to Dr. K. Nishikawa (Ochanomizu University) for sampling material and technical advice for paraffin sectioning, Dr. S. Koi (Nara Institute of Science and Technology) for his technical advice for resin sectioning and useful suggestions, Ms. T. Hiraoka (Hiraoka Environmental Science Laboratory) and Mr. H. Kiguchi (Kuki High School, Saitama) for their help with collecting materials. We also grateful to Dr. W. R. Buck (New York Botanical Garden) for reading the manuscript and giving valuable comments.

References

  1. Browning AJ, Gunning BES (1979a) Structure and function of transfer cells in the sporophyte haustorium of Funaria hygrometrica Hedw. I. The development and ultrastructure of the haustorium. J Exp Bot 30:1233–1246CrossRefGoogle Scholar
  2. Browning AJ, Gunning BES (1979b) Structure and function of transfer cells in the sporophyte haustorium of Funaria hygrometrica Hedw. II. Kinetics of uptake of labeled sugars and localization of absorbed products by freeze-substitution and autoradiography. J Exp Bot 30:1247–1264CrossRefGoogle Scholar
  3. Carafa A, Duckett JG, Ligrone R (2003) The placenta in Monoclea fosteri Hook. and Treubia lacunosa (Col.) Prosk.: insights into placental evolution in liverworts. Ann Bot 92:299–307CrossRefPubMedGoogle Scholar
  4. Caussin C, Fleurat-Lessard P, Bonnemain JL (1983) Absorption of some amino-acids by sporophytes isolated from Polytrichum formosum and ultrastructural characteristics of the haustorium transfer cells. Ann Bot (Lond) 51:167–173Google Scholar
  5. Chauhan E, Lal M (1982) Localization of some hydrolases and succinate dehydrogenase in the sporophyte–gametophyte junction in Physcomitrium cyathicarpum Mitt. Ann Bot (Lond) 50:763–769Google Scholar
  6. Duckett JG, Ligrone R (2003) The structure and development of haustorial placentas in leptosporangiate ferns provide a clear-cut distinction between euphyllophytes and lycophytes. Ann Bot (Lond) 92:513–521CrossRefGoogle Scholar
  7. French JC, Paolillo DJJ (1975) Intercalary meristematic activity in the sporophyte of Funaria hygrometrica Musci. Am J Bot 62:86–96CrossRefGoogle Scholar
  8. Frey W, Hilger HH (2001) The gametophyte–sporophyte junction in Apotreubia hortonae (Treubiaceae, Hepaticophytina). Structure and systematic implications. Nova Hedwigia 72:339–345Google Scholar
  9. Frey W, Hofmann M, Hilger HH (2001) The gametophyte–sporophyte junction: unequivocal hints for two evolutionary lines of archegoniate land plants. Flora 196:431–445Google Scholar
  10. Gambardella R (1987) Ultrastructure and development of the gametophyte vaginula–sporophyte foot complex in the liverwort Targionia hypophylla L. Planta 172:431–438CrossRefGoogle Scholar
  11. Gambardella R, Ligrone R (1987) The development of the placenta in the anthocerote Phaeoceros laevis (L.) Prosk. Planta 172:439–447CrossRefGoogle Scholar
  12. Goffinet B, Buck WR, Shaw AJ (2008) Morphology and classification of the Bryophyta. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 55–138CrossRefGoogle Scholar
  13. Graham LE, Wilcox LW (2000) The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philos Trans R Soc Lond B Biol Sci 355:757–767CrossRefPubMedGoogle Scholar
  14. Hébant C (1977) The conducting tissues of bryophytes. J. Cramer, VaduzGoogle Scholar
  15. Higuchi M (1997) Studies of polysety in Dicranum polysetum (Dicranaceae, Musci). Ann Tsukuba Bot Gard 16:129–133Google Scholar
  16. Hilger HH, Weigend M, Frey W (2002) The gametophyte-sporophyte junction in Isoëtes boliviensis Weber (Isoetales, Lycopodiophyta). Phyton 42:149–157Google Scholar
  17. Hilger HH, Kapuskar N, Frey W (2005) The gametophyte–sporophyte junction in Selaginella martensii SPRING (Selaginellales, Lycopodiophyta). Phyton 45:1–8Google Scholar
  18. Jernstedt JA, Cutter EG, Gifford EM, Lu P (1992) Angle meristem origin and development in Selaginella martensii. Ann Bot (Lond) 69:351–363Google Scholar
  19. Johnson G, Renzaglia K (2008) Embryology of Ceratopteris richardii (Pteridaceae, tribe Ceratopterideae), with emphasis on placental development. J Plant Res 121:581–592CrossRefPubMedGoogle Scholar
  20. Ligrone R, Gambardella R (1988a) The ultrastructure of the sporophyte–gametophyte junction and its relationship to bryophyte evolution. J Hattori Bot Lab 64:187–196Google Scholar
  21. Ligrone R, Gambardella R (1988b) The sporophyte–gametophyte junction in bryophytes. Adv Bryol 3:225–274Google Scholar
  22. Ligrone R, Duckett JG, Renzaglia KS (1993) The gametophyte–sporophyte junction in land plants. Adv Bot Res 19:231–317CrossRefGoogle Scholar
  23. Proctor MCF (1977) Evidence on the carbon nutrition of moss sporophytes from 14CO2 uptake and subsequent movement of labeled assimilate. J Bryol 9:375–386Google Scholar
  24. Renault S, Bonnemain JL, Faye L, Gaudillere JP (1992) Physiological aspects of sugar exchange between the gametophyte and the sporophyte of Polytrichum formosum. Plant Physiol 100:1815–1822CrossRefPubMedGoogle Scholar
  25. Renzaglia KS, McFarland KD, Smith DK (1997) Anatomy and ultrastructure of the sporophyte of Takakia ceratophylla (Bryophyta). Am J Bot 84:1337–1350CrossRefGoogle Scholar
  26. Roth D (1969) Embryo und Embryotheca bei den Laubmoosen. Eine histogenetiche und morphologische Untersuchung. Biblioth Bot 129:1–49Google Scholar
  27. Rushing AE, Anderson WB (1996) The sporophyte–gametophyte junction in the moss Acaulon muticum (Pottiaceae): early stages of development. Am J Bot 83:1274–1281CrossRefGoogle Scholar
  28. Vaizey JR (1887) On the anatomy and development of the sporogonium of the mosses. J Linn Soc Lond Bot 24:262–284Google Scholar
  29. Yip KL, Rushing AE (1999) An ultrastructural and developmental study of the sporophytic–gametophyte junction in Ephemerum cohaerens. Bryologist 102:179–195CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  1. 1.Department of Biological Science, Graduate School of ScienceUniversity of TokyoTokyoJapan
  2. 2.Department of BotanyNational Museum of Nature and ScienceTsukubaJapan
  3. 3.Ibaraki Nature MuseumBandoJapan

Personalised recommendations