Skip to main content
Log in

Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum

  • JPR Symposium
  • Cytoplasmic inheritance
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Direct evidence of digestion of paternal mitochondrial DNA (mtDNA) has been found in the true slime mold Physarum polycephalum. This is the first report on the selective digestion of mtDNA inside the zygote, and is striking evidence for the mechanism of maternal inheritance of mitochondria. Moreover, two mitochondrial nuclease activities were detected in this organism as candidates for the nucleases responsible for selective digestion of mtDNA. In the true slime mold, there is an additional feature of the uniparental inheritance of mitochondria. Although mitochondria are believed to be inherited from the maternal lineage in nearly all eukaryotes, the mating types of the true slime mold P. polycephalum is not restricted to two: there are three mating loci—matA, matB, and matC—and these loci have 16, 15, and 3 alleles, respectively. Interestingly, the transmission patterns of mtDNA are determined by the matA locus, in a hierarchical fashion (matA hierarchy) as follows: matA7 > matA2 > matA11 > matA12 > matA15/matA16 > matA1 > matA6. The strain possessing the higher status of matA would be the mtDNA donor in crosses. Furthermore, we have found that some crosses showed biparental inheritance of mitochondria. This review describes the phenomenon of hierarchical transmission of mtDNA in true slime molds, and discusses the presumed molecular mechanism of maternal and biparental inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863

    Article  CAS  PubMed  Google Scholar 

  • Aoyama H, Hagiwara Y, Misumi O, Kuroiwa T, Nakamura S (2006) Complete elimination of maternal mitochondrial DNA during meiosis resulting in the paternal inheritance of the mitochondrial genome in Chlamydomonas species. Protoplasma 228:231–241

    Article  CAS  PubMed  Google Scholar 

  • Bailey J, Anderson RW, Dee J (1990) Cellular events during sexual development from amoeba to plasmodium in the slime mould Physarum polycephalum. J Gen Microbiol 136:739–751

    CAS  PubMed  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  CAS  PubMed  Google Scholar 

  • Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39–50

    Article  CAS  PubMed  Google Scholar 

  • Baur E (1909) Das Wesen und die Erblichkeitsverhaltniss der “varietates albomarginatae hort” von Pelargonium zonale. Z Vererbungsl 1:330–351

    Google Scholar 

  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:1331–11338

    Article  Google Scholar 

  • Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms and models. Annu Rev Genet 35:125–148

    Article  CAS  PubMed  Google Scholar 

  • Casselton LA (2008) Fungal sex genes-searching for the ancestors. Bioessays 30:711–714

    Article  CAS  PubMed  Google Scholar 

  • Correns C (1909) Verebungsversuche mit blass (gelb) grunen und buntblattrigen sippen bei Mirabilis jalapa, Urica pilulifera und Lunaria annura. Z Verebungsl 1:291–329

    Article  Google Scholar 

  • Corriveau JL, Coleman AW (1991) Monitoring by epifluorescence microscopy of organelle DNA fate during pollen development in five angiosperm species. Dev Biol 147:271–280

    Article  CAS  PubMed  Google Scholar 

  • Creasey AM, Ranford-Cartwright LC, Moore DJ, Williamson DH, Wilson RJ, Walliker D, Carter R (1993) Uniparental inheritance of the mitochondrial gene cytochrome b in Plasmodium falciparum. Curr Genet 23:360–364

    Article  CAS  PubMed  Google Scholar 

  • Dawid IB, Blackler AW (1972) Maternal and cytoplasmic inheritance of mitochondrial DNA in Xenopus. Dev Biol 29:152–162

    Article  CAS  PubMed  Google Scholar 

  • Dee J (1966) Multiple alleles and other factors affecting plasmodium formation in the true slime mould Physarum polycephalum Schw. J Protozool 13:610–616

    Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77:6715–6719

    Article  CAS  PubMed  Google Scholar 

  • Hayashi J, Yonekawa H, Gotoh O, Motohashi J, Tagashira Y (1978) Two different molecular types of rat mitochondrial DNAs. Biochem Biophys Res Commun 81:871–877

    Article  CAS  PubMed  Google Scholar 

  • Holt CE, Huttermann A, Heunert HH, Galle HK (1980) Role of mating specificity genes in Physarum polycephalum. Eur J Cell Biol 22:316

    Google Scholar 

  • Hutchison CA III, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251:536–538

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga A, Sasaki A (2004) Evolution of hierarchical cytoplasmic inheritance in the plasmodial slime mold Physarum polycephalum. Evolution 58:710–722

    PubMed  Google Scholar 

  • Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF et al (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 92:4542–4546

    Article  CAS  PubMed  Google Scholar 

  • Kawano S, Kuroiwa T (1989) Transmission pattern of mitochondrial DNA during plasmodium formation in Physarum polycephalum. J Gen Microbiol 135:1559–1566

    Google Scholar 

  • Kawano S, Anderson RW, Nanba T, Kuroiwa T (1987a) Polymorphism and uniparental inheritance of mitochondrial DNA in Physarum polycephalum. J Gen Microbiol 133:3175–3182

    CAS  PubMed  Google Scholar 

  • Kawano S, Kuroiwa T, Anderson RW (1987b) A third multiallelic mating-type locus in Physarum polycephalum. J Gen Microbiol 133:2539–2546

    CAS  Google Scholar 

  • Kawano S, Takano H, Kuroiwa T (1995) Sexuality of mitochondria: fusion, recombination, and plasmids. Int Rev Cytol 161:49–110

    Article  CAS  PubMed  Google Scholar 

  • Kirouac-Brunet J, Mansson S, Pallota D (1981) Multiple allelism at the matB locus in Physarum polycephalum. Can J Genet Cytol 23:9–16

    Google Scholar 

  • Kroon AM, de Vos WM, Bakker H (1978) The heterogeneity of rat-liver mitochondrial DNA. Biochim Biophys Acta 519:269–273

    CAS  PubMed  Google Scholar 

  • Kuroiwa T (1985) Mechanisms of maternal inheritance of chloroplast DNA: an active digestion hypothesis. Microbiol Sci 2:267–270

    CAS  PubMed  Google Scholar 

  • Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62

    Article  CAS  Google Scholar 

  • Kuroiwa T, Kawano S, Nishibayashi S, Sato C (1982) Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature 298:481–483

    Article  CAS  PubMed  Google Scholar 

  • May G, Matzke E (1995) Recombination and variation at the A mating-type of Coprinus cinereus. Mol Biol Evol 12:794–802

    CAS  Google Scholar 

  • Meland S, Johansen S, Johansen T, Haugli K, Haugli F (1991) Rapid disappearance of one parental mitochondrial genotype after isogamous mating in the myxomycete Physarum polycephalum. Curr Genet 19:55–59

    Article  CAS  PubMed  Google Scholar 

  • Mirfakhrai M, Tanaka Y, Yanagisawa K (1990) Evidence for mitochondrial DNA polymorphism and uniparental inheritance in the cellular slime mold Polysphondylium pallidum: effect of intraspecies mating on mitochondrial DNA transmission. Genetics 24:607–613

    Google Scholar 

  • Moriyama Y, Kawano S (2003) Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum. Genetics 164:963–975

    CAS  PubMed  Google Scholar 

  • Moriyama Y, Yamazaki T, Nomura H, Sasaki N, Kawano S (2005) Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum. Curr Genet 48:334–343

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y, Itoh K, Nomura H, Kawano S (2009) Disappearance of mtDNA during mating of the true slime mold Didymium iridis. Cytologia 74:159–164

    Article  Google Scholar 

  • Nagata N, Saito C, Sakai A, Kuroiwa H, Kuroiwa T (1999) The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209:53–65

    Article  CAS  PubMed  Google Scholar 

  • Pallotta DJ, Youngman PJ, Shinnick TM, Holt CE (1979) Kinetics of mating in Physarum polycephalum. Mycologia 71:68–84

    Article  CAS  PubMed  Google Scholar 

  • Reilly JG, Thomas CA Jr (1980) Length polymorphisms, restriction site variation, and maternal inheritance of mitochondrial DNA of Drosophila melanogaster. Plasmid 3:109–115

    Article  CAS  PubMed  Google Scholar 

  • Shinnick TM, Pallotta DJ, Jones-Brown YVR, Youngman PJ, Holt CE (1978) A gene imz affecting the pH sensitivity of zygote formation in Physarum polycephalum. Curr Microbiol 1:163–166

    Article  Google Scholar 

  • Silliker ME, Collins OR (1988) Non-mendelian inheritance of mitochondrial DNA and ribosomal DNA in the myxomycete, Didymium iridis. Mol Gen Genet 213:370–378

    Article  CAS  PubMed  Google Scholar 

  • Silliker ME, Liles JL, Monroe JA (2002) Patterns of mitochondrial inheritance in the myxogastrid Didymium iridis. Mycologia 94:939–946

    Article  Google Scholar 

  • Specht CA, Novotny CP, Ullrich RC (1992) Mitochondrial DNA of Schizophyllum commune: restriction map, genetic map, and mode of inheritance. Curr Genet 22:129–134

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Abe T, Sakurai R, Moriyama Y, Miyazawa Y, Nozaki H, Kawano S, Sasaki N, Kuroiwa T (2001) The complete DNA sequence of the mitochondrial genome of Physarum polycephalum. Mol Gen Genet 264:539–545

    Article  CAS  PubMed  Google Scholar 

  • Wilch G, Ward S, Castle A (1992) Transmission of mitochondrial DNA in Ustilago violacea. Curr Genet 22:135–140

    Article  CAS  PubMed  Google Scholar 

  • Youngman PJ, Pallotta DJ, Hosler B, Struhl G, Holt CE (1979) A new mating compatibility locus in Physarum polycephalum. Genetics 91:683–693

    PubMed  CAS  Google Scholar 

  • Youngman PJ, Anderson RW, Holt CE (1981) Two multiallelic mating compatibility loci separately regulate zygote formation and zygote differentiation in the myxomycete Physarum polycephalum. Genetics 97:513–530

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Tsuneyoshi Kuroiwa for his thoughtful suggestions, generous support and encouragement. We also would like to thank Dr. J. Mark Cock for checking our manuscript. This study was supported by grants for Scientific Research in Priority Areas (no. 13440246, no. 15440246, and 20440123 to S.K.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yohsuke Moriyama or Shigeyuki Kawano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriyama, Y., Kawano, S. Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum . J Plant Res 123, 139–148 (2010). https://doi.org/10.1007/s10265-009-0298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0298-5

Keywords

Navigation