Journal of Plant Research

, Volume 123, Issue 1, pp 15–23 | Cite as

QTL analysis of leaf architecture

  • José Manuel Pérez-Pérez
  • David Esteve-Bruna
  • José Luis MicolEmail author
JPR Symposium


Leaf size and shape define the photosynthetic capability of a plant and have a significant impact on important agronomic traits, such as yield, quality, disease resistance and stress responses. Cultivated varieties of many plant species show remarkable variations in leaf morphology. Such variation usually exhibits a continuous phenotypic distribution and is controlled by the interaction of multiple genes known as quantitative trait loci (QTL). Here, we review several studies that evaluate natural variations in the leaf morphologies of crop species, as well as in the model plant Arabidopsis thaliana. The use of high-throughput, genome-wide approaches such as transcriptomics and metabolomics is helping to identify the nucleotide polymorphism(s) responsible for the phenotypic differences attributed to some of these QTL.


Arabidopsis thaliana Natural variation Leaf growth Recombinant inbred lines (RILs) 



We thank H. Candela for comments on the manuscript. Work in the laboratory of J.L.M. is supported by grants from the Ministerio de Ciencia e Innovación of Spain [BIO2007-30797-E, BIO2008-04075, and CSD2007-00057 (TRANSPLANTA)], the Generalitat Valenciana (PROMETEO/2009/112) and the European Commission [LSHG-CT-2006-037704 (AGRON-OMICS)]. D.E.-B. holds a fellowship from the Generalitat Valenciana (BFPI/2009/015).


  1. Abbott RJ, Gomes MF (1989) Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh. Heredity 62:411–418CrossRefGoogle Scholar
  2. Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764PubMedGoogle Scholar
  3. Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci USA 96:4710–4717CrossRefPubMedGoogle Scholar
  4. Al-Shehbaz IA, O’Kane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi: 10.1199/tab.0001
  5. Barkoulas M, Galinha C, Grigg SP, Tsiantis M (2007) From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol 10:660–666CrossRefPubMedGoogle Scholar
  6. Berná G, Robles P, Micol JL (1999) A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152:729–742PubMedGoogle Scholar
  7. Borevitz JO, Maloof JN, Lutes J, Dabi T, Redfern JL, Trainer GT, Werner JD, Asami T, Berry CC, Weigel D, Chory J (2002) Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics 160:683–696PubMedGoogle Scholar
  8. Chen JJ, Janssen BJ, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304CrossRefPubMedGoogle Scholar
  9. Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294CrossRefPubMedGoogle Scholar
  10. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488CrossRefPubMedGoogle Scholar
  11. Dunwell JM, Sunderland N (1973) Anther culture of Solanum tuberosum L. Euphytica 22:317–323CrossRefGoogle Scholar
  12. Dvorák J, Luo MC, Yang ZL (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434Google Scholar
  13. El-Assal SE, Alonso-Blanco C, Peeters AJM, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440CrossRefGoogle Scholar
  14. El-Lithy ME, Clerkx EJ, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 135:444–458Google Scholar
  15. El-Lithy ME, Bentsink L, Hanhart CJ, Ruys GJ, Rovito D, Broekhof JL, van der Poel HJ, van Eijk MJ, Vreugdenhil D, Koornneef M (2006) New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci. Genetics 172:1867–1876Google Scholar
  16. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedGoogle Scholar
  17. Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110:17–72PubMedGoogle Scholar
  18. Filiault DL, Wessinger CA, Dinneny JR, Lutes J, Borevitz JO, Weigel D, Chory J, Maloof JN (2008) Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci USA 105:3157–3162Google Scholar
  19. Flint J, Mott R (2001) Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet 2:437–445CrossRefPubMedGoogle Scholar
  20. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88CrossRefPubMedGoogle Scholar
  21. Frary A, Doganlar S, Daunay MC, Tanksley SD (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107:359–370CrossRefPubMedGoogle Scholar
  22. Frary A, Fritz LA, Tanksley SD (2004) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533CrossRefPubMedGoogle Scholar
  23. Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers. Theor Appl Genet 46:319–330CrossRefGoogle Scholar
  24. Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y (2003) ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J 36:353–365CrossRefPubMedGoogle Scholar
  25. Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-L, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Deans R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefPubMedGoogle Scholar
  26. Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S (2007) Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50:627–637CrossRefPubMedGoogle Scholar
  27. Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77PubMedGoogle Scholar
  28. Holtan HE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165:1541–1550PubMedGoogle Scholar
  29. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211PubMedGoogle Scholar
  30. Juenger T, Purugganan M, Mackay TF (2000) Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156:1379–1392PubMedGoogle Scholar
  31. Juenger T, Pérez-Pérez JM, Bernal S, Micol JL (2005) Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Evol Dev 7:259–271CrossRefPubMedGoogle Scholar
  32. Keim P, Diers BW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126:735–742PubMedGoogle Scholar
  33. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  34. Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA 104:1708–1713Google Scholar
  35. Kim HK, Kang ST, Suh DY (2005) Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed 124:582–589CrossRefGoogle Scholar
  36. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39CrossRefPubMedGoogle Scholar
  37. Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae—a model for linking genomics with biodiversity. Comp Funct Genomics 5:285–291CrossRefPubMedGoogle Scholar
  38. Kobayashi S, Fukuta Y, Morita S, Sato T, Osaki M, Khush GS (2003) Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.). Breed Sci 53:255–262CrossRefGoogle Scholar
  39. Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172CrossRefPubMedGoogle Scholar
  40. Lan T-H, Paterson AH (2001) Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor Appl Genet 103:383–397CrossRefGoogle Scholar
  41. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  42. Leister D, Varotto C, Pesaresi P, Niwergall A, Salamini F (1999) Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiol Biochem 37:671–678CrossRefGoogle Scholar
  43. Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4:419–426CrossRefGoogle Scholar
  44. Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277CrossRefGoogle Scholar
  45. Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750CrossRefGoogle Scholar
  46. Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A (2005) ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J 43:165–180Google Scholar
  47. Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016CrossRefPubMedGoogle Scholar
  48. Luquez VM, Guiamét JJ (2001) Effects of the ‘stay green’ genotype GGd1d1d2d2 on leaf gas exchange, dry matter accumulation and seed yield in soybean (Glycine max L. Merr.). Ann Bot (Lond) 87:313–318CrossRefGoogle Scholar
  49. Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339CrossRefPubMedGoogle Scholar
  50. Mansur LM, Carriquiry AL, Rao-Arelli AP (1993) Generation mean analysis of resistance to race 3 of soybean cyst nematode. Crop Sci 33:1249–1253CrossRefGoogle Scholar
  51. Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336Google Scholar
  52. Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870Google Scholar
  53. Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 107:89–101PubMedGoogle Scholar
  54. Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ (2005) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet 110:649–659CrossRefPubMedGoogle Scholar
  55. Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764CrossRefPubMedGoogle Scholar
  56. Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723CrossRefPubMedGoogle Scholar
  57. Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Zygotic loci on the second chromosome. Roux Arch Dev Biol 193:267–282CrossRefGoogle Scholar
  58. Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306CrossRefPubMedGoogle Scholar
  59. Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781CrossRefPubMedGoogle Scholar
  60. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726CrossRefPubMedGoogle Scholar
  61. Pérez-Pérez JM, Serrano-Cartagena J, Micol JL (2002) Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 162:893–915PubMedGoogle Scholar
  62. Piazza P, Jasinski S, Tsiantis M (2005) Evolution of leaf developmental mechanisms. New Phytol 167:693–710CrossRefPubMedGoogle Scholar
  63. Ponce MR, Quesada V, Micol JL (1998) Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J 14:497–501Google Scholar
  64. Qiu D, Gao M, Li G, Quiros C (2009) Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant Cell Rep 28:649–661CrossRefPubMedGoogle Scholar
  65. Robertson A (1967) The nature of quantitative genetic variation. In: Brink RA (ed) Heritage from Mendel. University of Wisconsin Press, Madison, WI, pp 265–280Google Scholar
  66. Robles P (2000) Análisis genético de mutantes de Arabidopsis thaliana con alteraciones en la morfología de la hoja (Ph.D. dissertation). Universidad de Alicante, AlicanteGoogle Scholar
  67. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedGoogle Scholar
  68. Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot London 99:1043–1054Google Scholar
  69. Shpak ED, Lakeman MB, Torii KU (2003) Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15:1095–1110Google Scholar
  70. Shpak ED, Berthiaume CT, Hill EJ, Torii KU (2004) Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development 131:1491–1501Google Scholar
  71. Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293CrossRefPubMedGoogle Scholar
  72. Soller M, Brody T, Genizi A (1976) On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39CrossRefGoogle Scholar
  73. Swarup K, Alonso-Blanco C, Lynn JR, Michaels SD, Amasino RM, Koornneef M, Millar AJ (1999) Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J 20:67–77Google Scholar
  74. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233CrossRefPubMedGoogle Scholar
  75. Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68CrossRefPubMedGoogle Scholar
  76. ter Steege MW, den Ouden FM, Lambers H, Stam P, Peeters AJ (2005) Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis. Plant Physiol 139:1078–1094CrossRefPubMedGoogle Scholar
  77. Tisné S, Reymond M, Vile D, Fabre J, Dauzat M, Koornneef M, Granier C (2008) Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol 148:1117–1127Google Scholar
  78. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746Google Scholar
  79. Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496CrossRefPubMedGoogle Scholar
  80. van Zanten M, Snoek LB, Proveniers MC, Peeters AJ (2009) The many functions of ERECTA. Trends Plant Sci 14:214–218CrossRefPubMedGoogle Scholar
  81. Yan J, Zhu J, He C, Benmoussa M, Wu P (1999) Molecular marker-assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci 39:538–544Google Scholar
  82. Yonezawa K (1997) Yield components. In: Matsuo T, Futsuhara Y, Kikuchi F, Yamaguchi H (eds) Science of the rice plant vol. III genetics. Food and Agriculture Policy Research Center, Tokyo, pp 400–412Google Scholar
  83. Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181CrossRefPubMedGoogle Scholar
  84. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRefPubMedGoogle Scholar
  85. Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Yi Chuan Xue Bao 33:824–832PubMedGoogle Scholar
  86. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976CrossRefPubMedGoogle Scholar
  87. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  88. Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2009

Authors and Affiliations

  • José Manuel Pérez-Pérez
    • 1
  • David Esteve-Bruna
    • 1
  • José Luis Micol
    • 1
    Email author
  1. 1.División de Genética and Instituto de BioingenieríaUniversidad Miguel HernándezElcheSpain

Personalised recommendations