Journal of Plant Research

, 123:25 | Cite as

Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development

  • Claudia Canales
  • Michalis Barkoulas
  • Carla Galinha
  • Miltos Tsiantis
JPR Symposium


Cardamine hirsuta, a small crucifer closely related to the model organism Arabidopsis thaliana, offers high genetic tractability and has emerged as a powerful system for studying the genetic basis for diversification of plant form. Contrary to A. thaliana, which has simple leaves, C. hirsuta produces dissected leaves divided into individual units called leaflets. Leaflet formation requires activity of Class I KNOTTED1-like homeodomain (KNOX) proteins, which also promote function of the shoot apical meristem (SAM). In C. hirsuta, KNOX genes are expressed in the leaves whereas in A. thaliana their expression is confined to the SAM, and differences in expression arise through cis-regulatory divergence of KNOX regulation. KNOX activity in C. hirsuta leaves delays the transition from proliferative growth to differentiation thus facilitating the generation of lateral growth axes that give rise to leaflets. These axes reflect the sequential generation of cell division foci across the leaf proximodistal axis in response to auxin activity maxima, which are generated by the PINFORMED1 (PIN1) auxin efflux carriers in a process that resembles organogenesis at the SAM. Delimitation of C. hirsuta leaflets also requires the activity of CUP SHAPED COTYLEDON (CUC) genes, which direct formation of organ boundaries at the SAM. These observations show how species-specific deployment of fundamental shoot development networks may have sculpted simple versus dissected leaf forms. These studies also illustrate how extending developmental genetic studies to morphologically divergent relatives of model organisms can greatly help elucidate the mechanisms underlying the evolution of form.


Leaf development Auxin KNOX proteins 



This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) BB/F012934/1 and the Gatsby Foundation. We thank J. Baker for photography. M.T. is a recipient of an EMBO Young Investigator Award and a Royal Society Wolfson Merit award.


  1. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857CrossRefPubMedGoogle Scholar
  2. Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965–3974PubMedGoogle Scholar
  3. Arber A (1950) The natural philosophy of plant form. Cambridge University Press, CambridgeGoogle Scholar
  4. Barkoulas M, Galinha C, Grigg SP, Tsiantis M (2007) From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol 10:660–666CrossRefPubMedGoogle Scholar
  5. Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141CrossRefPubMedGoogle Scholar
  6. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefPubMedGoogle Scholar
  7. Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832CrossRefPubMedGoogle Scholar
  8. Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860CrossRefPubMedGoogle Scholar
  9. Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–1839CrossRefPubMedGoogle Scholar
  10. Brand A, Shirding N, Shleizer S, Ori N (2007) Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato. Planta 246:941–951CrossRefGoogle Scholar
  11. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971CrossRefPubMedGoogle Scholar
  12. Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3:e245CrossRefPubMedGoogle Scholar
  13. Champagne C, Sinha N (2004) Compound leaves: equal to the sum of their parts? Development 131:4401–4412CrossRefPubMedGoogle Scholar
  14. Claßen-Bockhoff R (2001) Plant morphology: the historic concepts of Wilheim Troll, Walter Zimmermann and Agnes Arber. Ann Bot (Lond) 88:1153–1172CrossRefGoogle Scholar
  15. Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101:4728–4735CrossRefPubMedGoogle Scholar
  16. Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJt, Behringer RR (2008) Regulatory divergence modifies limb length between mammals. Genes Dev 22:141–151CrossRefPubMedGoogle Scholar
  17. De Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887CrossRefPubMedGoogle Scholar
  18. DeMason DA, Chawla R (2004) Roles for auxin during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 218:435–448CrossRefPubMedGoogle Scholar
  19. Dengler NG, Tsukaya H (2001) Leaf morphogenesis in dicotyledons—current issues. Int J Plant Sci 162:729–745CrossRefGoogle Scholar
  20. Dolan L, Poethig RS (1998) Clonal analysis of leaf development in cotton. Am J Bot 85:315–321CrossRefGoogle Scholar
  21. Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419CrossRefPubMedGoogle Scholar
  22. Dubrovsky JG, Rost TL, Colón-Carmona A, Doerner P (2001) Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30–36CrossRefPubMedGoogle Scholar
  23. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794CrossRefPubMedGoogle Scholar
  24. Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–2306CrossRefPubMedGoogle Scholar
  25. Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030CrossRefPubMedGoogle Scholar
  26. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230CrossRefPubMedGoogle Scholar
  27. Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487CrossRefPubMedGoogle Scholar
  28. Groot EP, Sinha N, Gleissberg S (2005) Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae). Plant Mol Biol 58:317–331CrossRefPubMedGoogle Scholar
  29. Guo M, Thomas J, Collins G, Timmermans MC (2008) Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20:48–58CrossRefPubMedGoogle Scholar
  30. Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst Evol 199:121–152CrossRefGoogle Scholar
  31. Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744CrossRefPubMedGoogle Scholar
  32. Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947CrossRefPubMedGoogle Scholar
  33. Hay A, Barkoulas M, Tsiantis M (2004) PINning down the connections: transcription factors and hormones in leaf morphogenesis. Curr Opin Plant Biol 7:575–581CrossRefPubMedGoogle Scholar
  34. Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961CrossRefPubMedGoogle Scholar
  35. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911CrossRefPubMedGoogle Scholar
  36. Hibara K, Karim MR, Takada S, Taoka K, Furutani M, Aida M, Tasaka M (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957CrossRefPubMedGoogle Scholar
  37. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587CrossRefPubMedGoogle Scholar
  38. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED-1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413Google Scholar
  39. Janssen BJ, Lund L, Sinha N (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786CrossRefPubMedGoogle Scholar
  40. Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565CrossRefPubMedGoogle Scholar
  41. Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll SB (2008) The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132:783–793CrossRefPubMedGoogle Scholar
  42. Kaplan DR (2001) Fundamental concepts of leaf morphology and morphogenesis: a contribution to the interpretation of molecular genetic mutants. Int J Plant Sci 162:465–474CrossRefGoogle Scholar
  43. Kenrick P, Crane PR (1997) The origin and early diversification of land plants: a cladistic study. Smithsonian Institution Press, LondonGoogle Scholar
  44. Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544CrossRefPubMedGoogle Scholar
  45. Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136:2997–3006CrossRefPubMedGoogle Scholar
  46. Lacroix CR, Jeune B, Purcell-McDonald S (2003) Shoot and compound leaf comparisons in eudicots: dynamic morphology as an alternative approach. Bot J Linn Soc 143:219–230CrossRefGoogle Scholar
  47. Lawrence PA (2004) Last hideout of the unknown? Nature 429:247CrossRefPubMedGoogle Scholar
  48. Lihova J, Marhold K, Kudoh H, Koch MA (2006) Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. Am J Bot 93:1206–1221CrossRefGoogle Scholar
  49. Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69CrossRefPubMedGoogle Scholar
  50. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  51. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991PubMedGoogle Scholar
  52. McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre F, Stern DL (2007) Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448:587–590CrossRefPubMedGoogle Scholar
  53. Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407CrossRefPubMedGoogle Scholar
  54. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945CrossRefPubMedGoogle Scholar
  55. Nishimura A, Tamaoki M, Sato Y, Matsuoka M (1999) The expression of tobacco knotted1-type class 1 homeobox genes correspond to regions predicted by the cytohistological zonation model. Plant J 18:337–347CrossRefPubMedGoogle Scholar
  56. Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000) Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127:5523–5532PubMedGoogle Scholar
  57. Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791CrossRefPubMedGoogle Scholar
  58. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263CrossRefPubMedGoogle Scholar
  59. Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74:581–594CrossRefGoogle Scholar
  60. Poethig RS, Sussex IM (1985) The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165:170–184CrossRefGoogle Scholar
  61. Raff RA (2000) Evo-devo: the evolution of a new discipline. Nat Rev Genet 1:74–79CrossRefPubMedGoogle Scholar
  62. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260CrossRefPubMedGoogle Scholar
  63. Sattler R, Rutishauser R (1992) Partial homology of pinnate leaves and shoots: orientation of leaflet inception. Bot Jahrb Syst Pflanzengesh Planzengeogr 114:61–79Google Scholar
  64. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027CrossRefPubMedGoogle Scholar
  65. Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489CrossRefPubMedGoogle Scholar
  66. Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823CrossRefPubMedGoogle Scholar
  67. Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10:416–422PubMedGoogle Scholar
  68. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, CambridgeGoogle Scholar
  69. Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge University Press, CambridgeGoogle Scholar
  70. Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135PubMedGoogle Scholar
  71. Taylor S, Hofer J, Murfet I (2001) Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell 13:31–46CrossRefPubMedGoogle Scholar
  72. Timmermans MC, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153CrossRefPubMedGoogle Scholar
  73. Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156CrossRefPubMedGoogle Scholar
  74. Uchida N, Townsley B, Chung K-H, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci USA 104:15953–15958CrossRefPubMedGoogle Scholar
  75. Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228CrossRefPubMedGoogle Scholar
  76. Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J (2000) PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127:5157–5165PubMedGoogle Scholar
  77. Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577CrossRefPubMedGoogle Scholar
  78. Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479CrossRefPubMedGoogle Scholar
  79. Waites R, Selvadurai HR, Oliver IR, Hudson A (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779–789CrossRefPubMedGoogle Scholar
  80. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692CrossRefPubMedGoogle Scholar
  81. Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946CrossRefPubMedGoogle Scholar
  82. Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2009

Authors and Affiliations

  • Claudia Canales
    • 1
  • Michalis Barkoulas
    • 1
  • Carla Galinha
    • 1
  • Miltos Tsiantis
    • 1
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations