Journal of Plant Research

, Volume 122, Issue 3, pp 305–316 | Cite as

Reticulate hybridization of Alpinia (Zingiberaceae) in Taiwan

Regular Paper

Abstract

Reticulate hybridization is a complicated and creative mechanism in plant evolution that can cause interference in phylogenetic studies. Based on observations of intermediate morphology, low pollen fertility, and overlapping distributions of putative parent species, Yang and Wang (Proceedings of the cross-strait symposium on floristic diversity and conservation. National Museum of Natural Science, Taichung, Taiwan, pp 183–197, 1998) first proposed reticulate hybridization of Alpinia in Taiwan. In the present study, molecular tools were used to explore relationships between four parental species and their homoploidy hybrids, and the impact of hybridization on phylogeny reconstruction. Based on DNA markers, maternal heritance of the chloroplast genome, and additivity of nuclear ribosomal internal transcribed spacer, the present results provide strong support for the hybridization hypothesis. Co-existence of parental ribotypes within hybrids revealed that these hybridization events were current, while reciprocal and introgressive hybridization were inferred from chloroplast DNA data. Furthermore, iterative hybridizations involving more than two parental species may occur in notorious hybrid zones. Ecological, phenological, and physiological evidence provides insight into why such frequent hybridization occurs in Taiwanese Alpinia. In the phylogenetic tree of the Zerumbet clade reconstructed in this study, the chloroplast sequences from one hybrid species were not grouped into a subclade, implying instability caused by hybridization. Failure to find morphological apomorphies and biogeographical patterns in this clade was likely partially due to reticulate hybridization.

Keywords

Alpinia Homoploid hybridization Internal transcribed spacer Reticulate hybridization Taiwan trnK-matK 

Supplementary material

10265_2009_223_MOESM1_ESM.doc (174 kb)
Table S1: Voucher specimens, collection localities and cpDNA haplotypes of the materials used in this study. All voucher specimens are deposited at the herbarium of National Taiwan Normal University (TNU) (DOC 173 kb)
10265_2009_223_MOESM2_ESM.doc (57 kb)
Table S2: GenBank accession numbers of matK (5′trnK-matK-3′trnK) sequences used in phylogenetic analysis of the Zerumbet clade (DOC 57 kb)

References

  1. Aguilar JF, Rossello JA, Feliner GN (1999) Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol Ecol 8:1341–1346CrossRefGoogle Scholar
  2. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  3. Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630PubMedCrossRefGoogle Scholar
  4. Carine MA, Robba L, Little R, Russell S, Guerra AS (2007) Molecular and morphological evidence for hybridization between endemic Canary Island Convolvulus. Bot J Linn Soc 154:187–204CrossRefGoogle Scholar
  5. Chen ZY, Huang XX (1996) Cytotaxonomy of the tribe Alpineae. In: Wu TL, Wu QG, Chen ZY (eds) Proceedings of the second symposium on the family Zingiberaceae. Zhongshan University Press, Guangzhou, China, pp 112–121Google Scholar
  6. Chiang TY, Hong KH, Peng CI (2001) Experimental hybridization reveals biased inheritance of the internal transcribed spacer of the nuclear ribosomal DNA in Begonia x taipeiensis. J Plant Res 114:343–351CrossRefGoogle Scholar
  7. Ferguson D, Sang T (2001) Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proc Natl Acad Sci USA 98:3915–3919PubMedCrossRefGoogle Scholar
  8. Grant V (1981) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  9. Guo YP, Vogl C, Van Loo M, Ehrendorfer F (2006) Hybrid origin and differentiation of two tetraploid Achillea species in East Asia: molecular, morphological and ecogeographical evidence. Mol Ecol 15:133–144PubMedCrossRefGoogle Scholar
  10. Howarth DG, Baum DA (2005) Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (goodeniaceae) in the Hawaiian Islands. Evolution 59:948–961PubMedGoogle Scholar
  11. Joly S, Starr JR, Lewis WH, Bruneau A (2006) Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot 93:412–425CrossRefGoogle Scholar
  12. Karrenberg S, Lexer C, Rieseberg LH (2007) Reconstructing the history of selection during homoploid hybrid speciation. Am Nat 169:725–737PubMedCrossRefGoogle Scholar
  13. Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–625CrossRefGoogle Scholar
  14. Kress WJ, Prince LM, Williams KJ (2002) The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am J Bot 89:1682–1696CrossRefGoogle Scholar
  15. Kress WJ, Liu AZ, Newman M, Li QJ (2005) The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am J Bot 92:167–178CrossRefGoogle Scholar
  16. Kress WJ, Newman MF, Poulsen AD, Specht C (2007) An analysis of generic circumscriptions in tribe Alpinieae (Alpiniodeae: Zingiberiaceae). Gard Bull Singapore 59:113–128Google Scholar
  17. Larsen K, Lock JM, Maas H, Maas PJM (eds) (1998) Zingiberaceae. Springer, BerlinGoogle Scholar
  18. Li QJ, Xu ZF, Kress WJ, Xia YM, Zhang L, Deng XB, Gao JY, Bai ZL (2001a) Flexible style that encourages outcrossing. Nature 410:432 (erratum vol 411: 260)PubMedCrossRefGoogle Scholar
  19. Li QJ, Xu ZF, Xia YM, Zhang L, Deng XB, Gao JY (2001b) Study on the flexistyly pollination mechanism in Alpinia plants (Zingiberaceae). Acta Bot Sin 43:364–369Google Scholar
  20. Li QJ, Kress WJ, Xu ZF, Mia YM, Zhang L, Deng XB, Gao JY (2002) Mating system and stigmatic behaviour during flowering of Alpinia kwangsiensis (Zingiberaceae). Plant Syst Evol 232:123–132CrossRefGoogle Scholar
  21. Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in plants. Am J Bot 91:1700–1708PubMedCrossRefGoogle Scholar
  22. Manos PS, Steele KP (1997) Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. Am J Bot 84:1407–1419CrossRefGoogle Scholar
  23. Moller M, Cronk QCB (1997) Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am J Bot 84:956–965CrossRefGoogle Scholar
  24. Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561PubMedCrossRefGoogle Scholar
  25. Nagamitsu T, Kawahara T, Kanazashi A (2006) Endemic dwarf birch Betula apoiensis (Betulaceae) is a hybrid that originated from Betula ermanii and Betula ovalifolia. Plant Species Biol 21:19–29CrossRefGoogle Scholar
  26. Noyes RD (2006) Intraspecific nuclear ribosomal DNA divergence and reticulation in sexual diploid Erigeron strigosus (Asteraceae). Am J Bot 93:470–479CrossRefGoogle Scholar
  27. Pan J, Zhang DM, Sang T (2007) Molecular phylogenetic evidence for the origin of a diploid hybrid of Paeonia (Paeoniaceae). Am J Bot 94:400–408CrossRefGoogle Scholar
  28. Peng CI, Chiang TY (2000) Molecular confirmation of unidirectional hybridization in Begonia x taipeiensis Peng (Begoniaceae) from Taiwan. Ann Mo Bot Gard 87:273–285CrossRefGoogle Scholar
  29. Rangsiruji A, Newman MF, Cronk QCB (2000a) Origin and relationships of Alpinia galanga (Zingiberaceae) based on molecular data. Edinburgh J Bot 57:9–37CrossRefGoogle Scholar
  30. Rangsiruji A, Newman MF, Cronk QCB (2000b) A study of the infrageneric classification of Alpinia (Zingiberaceae) based on the ITS region of nuclear rDNA and the trnL-F spacer of chloroplast DNA. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 695–709Google Scholar
  31. Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae)—evidence from ribosomal genes. Am J Bot 78:1218–1237CrossRefGoogle Scholar
  32. Rieseberg LH (1995) The role of hybridization in evolution—old wine in new skins. Am J Bot 82:944–953CrossRefGoogle Scholar
  33. Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389CrossRefGoogle Scholar
  34. Rieseberg LH (2006) Hybrid speciation in wild sunflowers. Ann Mo Bot Gard 93:34–48CrossRefGoogle Scholar
  35. Rosenthal DM, Rieseberg LH, Donovan LA (2005) Re-creating ancient hybrid species’ complex phenotypes from early-generation synthetic hybrids: three examples using wild sunflowers. Am Nat 166:26–41PubMedCrossRefGoogle Scholar
  36. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefGoogle Scholar
  37. Schumann K (1904) Alpinia L. In: Engler A (ed) Das Pflanzenreich VI. Engelmann, Leipzig, pp 308–371Google Scholar
  38. Smith RM (1990) Alpinia (Zingiberaceae): a proposal new infrageneric classification. Edinburgh J Bot 47:1–75CrossRefGoogle Scholar
  39. Stecconi M, Marchelli P, Puntieri J, Picca P, Gallo L (2004) Natural hybridization between a deciduous (Nothofagus antarctica, Nothofagaceae) and an evergreen (N. dombeyi) forest tree species: evidence from morphological and isoenzymatic traits. Ann Bot Lond 94:775–786PubMedCrossRefGoogle Scholar
  40. Steele KP, Vilgalys R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142CrossRefGoogle Scholar
  41. Sun S, Gao JY, Liao WJ, Li QJ, Zhang DY (2007) Adaptive significance of flexistyly in Alpinia blepharocalyx (Zingiberaceae): a hand-pollination experiment. Ann Bot Lond 99:661–666PubMedCrossRefGoogle Scholar
  42. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  43. Tagane S, Hiramatsu M, Okubo H (2008) Hybridization and asymmetric introgression between Rhododendron eriocarpum and R. indicum on Yakushima Island, southwest Japan. J Plant Res 121:387–395PubMedCrossRefGoogle Scholar
  44. Tawada S (1987) A new hybrid of Alpinia from Okinawa Island, Ryukyu Japan. J Phytogeogr Taxon 35:83–84Google Scholar
  45. Walker EH (1976) Flora of Okinawa and the Southern Rhukyu Islands. Smithsonian Institution Press, Washington, DCGoogle Scholar
  46. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedCrossRefGoogle Scholar
  47. Yamaji H, Fukuda T, Yokoyama J, Pak JH, Zhou CZ, Yang CS, Kondo K, Morota T, Takeda S, Sasaki H, Maki M (2007) Reticulate evolution and phylogeography in Asarum sect. Asiasarum (Aristolochiaceae) documented in internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Mol Phylogenet Evol 44:863–884PubMedCrossRefGoogle Scholar
  48. Yang JJ, Wang JC (1998) The systematic study of Taiwanese Alpinia (Zingiberaceae). In: Chiu ST, Peng CI (eds) Proceedings of the cross-strait symposium on floristic diversity and conservation. National Museum of Natural Science, Taichung, Taiwan, pp 183–197Google Scholar
  49. Zha HG, Milne RI, Sun H (2008) Morphological and molecular evidence of natural hybridization between two distantly related Rhododendron species from the Sino-Himalaya. Bot J Linn Soc 156:119–129Google Scholar
  50. Zhang L, Li QJ, Deng XB, Ren PY, Gao JY (2003) Reproductive biology of Alpinia blepharocalyx (Zingiberaceae): another example of flexistyly. Plant Syst Evol 241:67–76CrossRefGoogle Scholar
  51. Zhang JL, Zhang CQ, Gao LM, Yang JB, Li HT (2007) Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence. J Plant Res 120:457–463PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2009

Authors and Affiliations

  1. 1.Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations