Advertisement

Journal of Plant Research

, Volume 121, Issue 4, pp 365–376 | Cite as

A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera

  • Jeong-Mi Park
  • Jean-François Manen
  • Alison E. Colwell
  • Gerald M. Schneeweiss
Regular Paper

Abstract

The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera.

Keywords

Boschniakia Holoparasitic plants Orobanchaceae Orobanche Phylogeny rps2-gene 

Notes

Acknowledgements

We thank all the people who helped collect material in the field. Financial support by the Austrian Science Fund (P14352-Bio; P19404-B03) and the Consevatoire et Jardin Botaniques de la Ville de Genève is gratefully acknowledged.

References

  1. Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new” Plantaginaceae. Am J Bot 92:297–315CrossRefGoogle Scholar
  2. Beck-Mannagetta G (1890) Monographie der Gattung Orobanche. Fischer, CasselGoogle Scholar
  3. Beck-Mannagetta G (1930) Orobanchaceae. In: Engler A (ed) Das Pflanzenreich. Regni vegetabilis conspectus. Engelmann, Leipzig, pp 1–348Google Scholar
  4. Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93:1039–1051CrossRefGoogle Scholar
  5. Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, Källersjö M, Barkhordarian E (2002) Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol Phylogen Evol 24:264–301Google Scholar
  6. Carlón L, Gómez Casares G, Laínz M, Moreno Moral G, Sánchez Pedraja Ó, Schneeweiss GM (2005) Más, a propósito de algunas Orobanche L. y Phelipanche Pomel (Orobanchaceae) del oeste del Paleártico. Doc Jardín Bot Atlánt Gijón 3:1–71Google Scholar
  7. dePamphilis CW (1995) Genes and genomes. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 177–205Google Scholar
  8. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339PubMedCrossRefGoogle Scholar
  9. dePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci USA 94:7367–7372PubMedCrossRefGoogle Scholar
  10. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):e88 doi: 10.1371/journal.pbio.0040088 PubMedCrossRefGoogle Scholar
  11. García MA, Nicholson EH, Nickrent DL (2004) Extensive intraindividual variation in plastid rDNA sequences from the holoparasite Cynomorium coccineum (Cynomoriaceae). J Mol Evol 58:322–332PubMedCrossRefGoogle Scholar
  12. Holub J (1977) New names in Phanerogamae 6. Folia Geobot Phytotax 12:417–432Google Scholar
  13. Holub J (1990) Some taxonomic and nomenclatural changes within Orobanche s. l. (Orobanchaceae). Preslia 62:193–198Google Scholar
  14. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688PubMedCrossRefGoogle Scholar
  15. Manen JF, Habashi C, Jeanmonod D, Park JM, Schneeweiss GM (2004) Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogen Evol 33:482–500CrossRefGoogle Scholar
  16. Morden CW, Wolfe KH, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes. EMBO J 10:3281–3288PubMedGoogle Scholar
  17. Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Plant molecular systematics II. Kluwer, Boston, pp 211–241Google Scholar
  18. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67PubMedCrossRefGoogle Scholar
  19. Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Miss Bot Gard 82:176–193CrossRefGoogle Scholar
  20. Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361PubMedCrossRefGoogle Scholar
  21. Oxelman B, Kornhall P, Olmstead RG, Bremer B (2005) Further disintegration of Scrophulariaceae. Taxon 54:411–425Google Scholar
  22. Park JM, Kovačić S, Liber Z, Eddie WMM, Schneeweiss GM (2006) Phylogeny and biogeography of isophyllous species of Campanula (Campanulaceae) in the Mediterranean area. Syst Bot 31:862–880CrossRefGoogle Scholar
  23. Park JM, Manen JF, Schneeweiss GM (2007a) Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phylogen Evol 43:974–985CrossRefGoogle Scholar
  24. Park JM, Schneeweiss GM, Weiss-Schneeweiss H (2007b) Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Gene 387:75–86PubMedCrossRefGoogle Scholar
  25. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  26. Randle CP, Wolfe AD (2005) The evolution and expression of RBCL in holoparasitic sister-genera Harveya and Hyobanche (Orobanchaceae). Am J Bot 92:1575–1585CrossRefGoogle Scholar
  27. Ree R (2005) Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae). Int J Plant Sci 166:595–613CrossRefGoogle Scholar
  28. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  29. Schneeweiss GM, Colwell A, Park JM, Jang CG, Stuessy TF (2004a) Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS-sequences. Mol Phylogen Evol 30:465–478CrossRefGoogle Scholar
  30. Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H (2004b) Chromosome numbers and karyotype evolution of holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 91:439–448CrossRefGoogle Scholar
  31. Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23:7–9PubMedCrossRefGoogle Scholar
  32. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166CrossRefGoogle Scholar
  33. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  34. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  35. Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b.10 for 32-bit Microsoft Windows. Sinauer, SunderlandGoogle Scholar
  36. Teryokhin ES, Shibakina GV, Serafimovich NB, Kravtsova TI (1993) Determinator of broomrapes of the USSR Flora (in Russian). Nauka, Leningrad (St Petersburg)Google Scholar
  37. Tomari N, Ishizuka Y, Moriya A, Kojima S, Deyama T, Mizukami H, Tu P (2002) Pharmacognostical studies of cistanchis herba (III). Phylogenetic relationship of the Cistanche plants based on plastid rps2 gene and rpl16-rpl14 intergenic spacer sequences. Biol Pharmaceut Bull 25:218–222CrossRefGoogle Scholar
  38. Tomari N, Ishizuka Y, Moriya A, Kojima S, Deyama T, Coskun M, Tu P, Mizukami H (2003) Pharmacognostical studies of cistanchis herba (IV). Phylogenetic relationship of the Cistanche plants based on plastid rps2 gene and rpl16-rpl14 intergenic spacer sequences. J Nat Med 57:233–237Google Scholar
  39. Uhlich H, Pusch J, Barthel KJ (1995) Die Sommerwurzarten Europas. Westarp Wissenschaften, MagdeburgGoogle Scholar
  40. Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156CrossRefGoogle Scholar
  41. Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic parasitic plants. Mol Biol Evol 15:1243–1248PubMedGoogle Scholar
  42. Wolfe AD, Randle CP (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 29:1011–1020CrossRefGoogle Scholar
  43. Wolfe AD, Randle CP, Liu L, Steiner KE (2005) Phylogeny and biogeography of Orobanchaceae. Folia Geobot 40:115–134CrossRefGoogle Scholar
  44. Young ND, dePamphilis CW (2000) Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron of nonphotosynthetic plants. Mol Biol Evol 17:1933–1941PubMedGoogle Scholar
  45. Young ND, dePamphilis CW (2005) Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evol Biol 5:16 doi: 10.1186/1471-2148-5-16 PubMedCrossRefGoogle Scholar
  46. Young ND, Steiner KE, dePamphilis CW (1999) The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Ann Miss Bot Gard 86:876–893CrossRefGoogle Scholar
  47. Zhou Y, Rodrigue N, Lartillot N, Philippe H (2007) Evaluation of the models handling heterotachy in phylogenetic inference. BMC Evol Biol 7:206 doi: 10.1186/1471-2148-7-206 PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2008

Authors and Affiliations

  • Jeong-Mi Park
    • 1
  • Jean-François Manen
    • 2
  • Alison E. Colwell
    • 3
  • Gerald M. Schneeweiss
    • 4
  1. 1.Department of Systematic and Evolutionary BotanyUniversity of ViennaViennaAustria
  2. 2.Conservatoire et Jardin BotaniquesChambésy/GenéveSwitzerland
  3. 3.Western Ecological Research CenterUS Geological SurveyEl PortalUSA
  4. 4.Department of Biogeography and Botanical GardenUniversity of ViennaViennaAustria

Personalised recommendations