Molecular confirmation of the hybrid origin of the critically endangered western Mediterranean endemic Sonchus pustulatus (Asteraceae: Sonchinae)

  • Seung-Chul Kim
  • Jose A. Mejías
  • Pesach Lubinsky
Regular Paper


The critically endangered composite Sonchus pustulatus Willk. despite being known from fewer than ten locations in southern Spain and northern Africa, has never been characterized in robust phylogenetic context. Here, we report molecular evidence that strongly supports a hybrid origin for S. pustulatus. Although parentage cannot be identified with certainty, analysis of DNA sequence variation from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) supports a phylogenetic placement of S. pustulatus close to other species in the poorly known section Pustulati, whereas examination of chloroplast DNA (cpDNA) places S. pustulatus most closely with species from the sections Sonchus and Asperi. This is one of several instances of topological non-concordance reported for the genus Sonchus. Monophyly of S. pustulatus in both gene genealogies supports the null hypothesis of a single origin, and the relatively large amount of nucleotide substitutions is indicative of an origin in the range of millions of years. A hypothesis of a northern African origin of S. pustulatus followed by dispersal to the Iberian Peninsula during the Messinian salinity crisis/later Quaternary glaciations is proposed on the basis of biogeographic patterns and calibrated estimations of molecular evolution.


Critically endangered species Internal transcribed spacer (ITS) matK gene Reticulate evolution Sonchus pustulatus 



This project was supported, in part, by an Academic Senate Grant, Regents’ Faculty Fellowship, and Agricultural Experiment Station funds from the University of California at Riverside, to S.-C. Kim. We are also grateful for financial support by the Spanish Ministerio de Educación y Ciencia (grant CGL 2006-00817) and Junta de Andalucía (Group RNM-210). Suggestions from two anonymous reviewers and the editor greatly improved the earlier version of the manuscript. We thank Li Yao for cloning S. pustulatus. Special thanks are due to Stephen Jury for information of the Sonchus species in Morocco.

Supplementary material

10265_2008_166_MOESM1_ESM.pdf (131 kb)
Figure S1. Geographic locations of known (solid) and reported (gray) populations of Sonchus subgenus Sonchus section Pustulati taxa. SquaresS. pustulatus, circlesS. fragilis, trianglesS. masguindalii, and starsS. briquetianus. Populations in gray have not been confirmed during the past 15 years. X indicate the peaks of mountains, followed by altitudes in meters. (PDF 131 kb)
10265_2008_166_MOESM2_ESM.doc (49 kb)
Appendix S1. Additional samples of species in section Pustulati used in this study, including the locality, voucher and herbarium numbers, and GenBank accession numbers. SEV Herbarium Universidad de Sevilla. RNG Herbarium of the University of Reading. Accession numbers with asterisks were reported previously in Kim et al. (2007) (DOC 48 kb)


  1. Albadalejo RG, Fuertes Aguilar J, Aparicio A, Nieto Feliner G (2005) Contrasting nuclear-plastidial phylogenetic patterns in the recently diverged Iberian Phlomis crinita and P. lychnitis lineages (Lamiaceae). Taxon 54:987–997Google Scholar
  2. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford, 215 ppGoogle Scholar
  3. Arnold MA, Bouck AC, Cornman RS (2003) Verne Grant and Louisiana irises: is there anything new under the sun? New Phytol 161:143–149CrossRefGoogle Scholar
  4. Baldwin BG, Sanderson MJ (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A 95:9402–9406PubMedCrossRefGoogle Scholar
  5. Bañares Á, Blanca G, Gümes J, Moreno JC, Oritz S (eds) (2004) Atlas y Libro Rojo de la Flora Vascular Amenazada de Espana: Taxones Prioritarios. Dirección General de Conservación de la Naturaleza. Madrid, Spain, 1072 ppGoogle Scholar
  6. Barrón E, Peyrot D (2006) La vegetación forestal en el Terciario. In: Carrión JS, Fernández S, Fuentes N (eds) Paleoambientes y cambio climático. Fundación Séneca—Agencia de Ciencia y Tecnología de la Región de Murcia, Murcia, Spain, pp 56–76Google Scholar
  7. Boulos L (1972) Révision systématique du genre Sonchus L. s.l. I. Introduction et classification. Bot Not 125:287–305Google Scholar
  8. Boulos L (1973) Révision systématique du genre Sonchus L. s.l. IV. Sous-genre 1. Sonchus. Bot Not 126:155–196Google Scholar
  9. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803CrossRefGoogle Scholar
  10. Cheddadi R, De Beaulieu J-L, Jouzel J, Andrieu-Ponel V, Laurent J-M, Reille M, Raynaud MD, Bar-Hen A (2005) Similarity of vegetation dynamics during interglacial periods. Proc Natl Acad Sci U S A 102:13939–13943PubMedCrossRefGoogle Scholar
  11. Collina-Girard J (2001) L’Atlantide devant le détroit de Gibraltar? Mythe et géologie. Earth Planet Sci 333:233–240Google Scholar
  12. Comes HP, Abbott RJ (2001) Molecular phylogeography, reticulation, and lineage sorting in Mediterranean Senecio sect. Senecio (Asteraceae). Evolution 55:1943–1962PubMedGoogle Scholar
  13. De Jong H (1998) In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna. Biol J Linn Soc 65:99–164CrossRefGoogle Scholar
  14. Doyle JJ, Doyle JL, Rauscher JT, Brown AHD (2004) Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine). New Phytol 161:121–132CrossRefGoogle Scholar
  15. Ellstrand NC, Whittikus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci U S A 93:5090–5093PubMedCrossRefGoogle Scholar
  16. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  18. Fennane M, Ibn Tattou M (1998) Catalogue des plantes vascularies rares, menacées ou endémiques du Maroc. Bocconea 8:5–243Google Scholar
  19. Fuertes Aguilar J, Nieto Feliner G (2003) Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Mol Phylogenet Evol 28:430–447PubMedCrossRefGoogle Scholar
  20. Goldman N (1993) Statistical tests of models of DNA substitution. J Mol Evol 36:182–198PubMedCrossRefGoogle Scholar
  21. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York, 563 ppGoogle Scholar
  22. Gutiérrez Larena B, Fuertes Aguilar J, Nieto Feliner G (2002) Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol 11:1965–1974PubMedCrossRefGoogle Scholar
  23. Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423PubMedCrossRefGoogle Scholar
  24. Jobst J, King K, Hemleben V (1998) Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol Phylogenet Evol 9:204–219PubMedCrossRefGoogle Scholar
  25. Kim S-C, Crawford DJ, Jansen RK (1996a) Phylogenetic relationships among the genera of the subtribe Sonchinae (Asteraceae): evidence from ITS sequences. Syst Bot 21:417–432CrossRefGoogle Scholar
  26. Kim S-C, Crawford DJ, Francisco-Ortega J, Santos-Guerra A (1996b) A common origin for woody Sonchus and five related genera in the Macaronesian Islands: molecular evidence for extensive radiation. Proc Natl Acad Sci U S A 93:7743–7748PubMedCrossRefGoogle Scholar
  27. Kim S-C, Lu CT, Lepschi BJ (2004) Phylogenetic positions of Actites megalocarpa and Sonchus hydrophilus (Sonchinae: Asteraceae) based on ITS and chloroplast non-coding DNA sequences. Aust Syst Bot 17:73–81CrossRefGoogle Scholar
  28. Kim S-C, Lee C, Mejías JA (2007) Phylogenetic analysis of chloroplast DNA matK gene and ITS of nrDNA sequences reveals polyphyly of the genus Sonchus and new relationships among the subtribe Sonchinae (Asteraceae: Cichorieae). Mol Phylogenet Evol 44:578–597PubMedCrossRefGoogle Scholar
  29. Kimura M (1980) Simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  30. Knobloch IW (1972) Intergeneric hybridization in flowering plants. Taxon 21:97–103CrossRefGoogle Scholar
  31. Lee C, Kim S-C, Lundy K, Santos-Guerra A (2005) Chloroplast DNA phylogeny of the woody Sonchus alliance (Asteraceae: Sonchinae) in the Macaronesian Islands. Am J Bot 92:2072–2085CrossRefGoogle Scholar
  32. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford, 230 ppGoogle Scholar
  33. Mallet J (2007) Hybrid speciation. Nature 446:279–283PubMedCrossRefGoogle Scholar
  34. McBreen K, Lockhart PJ (2006) Reconstructing reticulate evolutionary histories of plants. Trends Plant Sci 11:398–404PubMedCrossRefGoogle Scholar
  35. Mejías JA (1988) Diferencias cariológicas y morfológicas entre Sonchus pustulatus Willk. y Sonchus tenerrimus L. Lagascalia 15 [Suppl]:345–354Google Scholar
  36. Mejías JA, Andrés C (2004) Karyological studies in Iberian Sonchus (Asteraceae: Lactuceae): S. oleraceus, S. microcephalus and S. asper and a general discussion. Folia Geobot 39:275–291CrossRefGoogle Scholar
  37. Mota JF, Cueto M, Pérez-García FJ, Garrido JA, Martínez-Hernández F, Medina-Cazorla JM, Sola AJ, Schwarzer H (2005) Contribución al conocimiento de la flora de Andalucía: citas novedosas de la provincia de Almería, el elemento estenócoro. Acta Bot Malacitan 30:227–231Google Scholar
  38. Nieto Feliner G, Fuertes Aguilar J, Roselló JA (2002) Reticulation or divergence: the origin of a rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers. Plant Syst Evol 231:19–38CrossRefGoogle Scholar
  39. Okuyama Y, Fujii N, Wakabayashi M, Kawakita A, Ito M, Watanabe M, Murakami N, Kato M (2005) Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed introgression patterns in three molecular data partition phylogenies of Asian Mitella (Saxifragaceae). Mol Biol Evol 22:285–296PubMedCrossRefGoogle Scholar
  40. Ortiz A, Tremetsberger K, Talavera S, Stuessy TF, García-Castaño JL (2007) Population structure of Hypochaeris salzmanniana DC. (Asteraceae), an endemic species to the Atlantic coast on both sides of the Strait of Gibraltar, in relation to Quaternary sea level changes. Mol Ecol 16:541–552PubMedCrossRefGoogle Scholar
  41. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  42. Pou A (1988) La Erosión. Ministerio de Obras Públicas y Urbanismo. Madrid, 121 ppGoogle Scholar
  43. Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. Am J Bot 78:1218–1237CrossRefGoogle Scholar
  44. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216PubMedCrossRefGoogle Scholar
  45. Roux J, Boulos L (1972) Révision systématique du genre Sonchus L. s.l. II. Étude caryologique. Bot Not 125:306–309Google Scholar
  46. Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  47. Sang T, Crawford DJ, Kim S-C, Stuessy TF (1994) Radiation of the endemic genus Dendroseris (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the ITS regions of nuclear ribosomal DNA. Am J Bot 81:1494–1501CrossRefGoogle Scholar
  48. Soltis DE, Kuzoff RK (1995) Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49:727–742CrossRefGoogle Scholar
  49. Soltis DE, Johnson LA, Looney C (1996) Discordance between ITS and chloroplast topologies in the Boykinia group (Saxigragaceae). Syst Bot 21:169–185CrossRefGoogle Scholar
  50. Stebbins GL, Jenkins JA, Walters MS (1953) Chromosomes and phylogeny in the Compositae, tribe Cichorieae. Univ Calif Publ Bot 26:401–430Google Scholar
  51. Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (*and other methods) version 4.0. Sinauer, Sunderland Google Scholar
  52. Talavera S, Devesa JA, Galiano EF (1984) Notas cariosistemáticas sobre plantas norteafricanas. I. Compositae. Candollea 39:271–280Google Scholar
  53. Thompson JD (2003) Plant evolution in the Mediterranean. Oxford University Press, Oxford, 293 ppGoogle Scholar
  54. Veith M, Mayer C, Samraoui B, Barroso DD, Bogaerts S (2004) From Europe to Africa and vice versa: evidence for intercontinental dispersal in ribbed salamanders (Genus Pleurodeles). J Biogeogr 31:159–171CrossRefGoogle Scholar
  55. Wendel JF, Schnabel A, Seelanan T (1995) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol 4:298–313PubMedCrossRefGoogle Scholar
  56. Whelan S, Goldman N (1999) Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics. Mol Biol Evol 16:1292–1299Google Scholar
  57. Wojciechowski MF, Sanderson MJ, Fu FM (1999) Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Syst Bot 24:409–437CrossRefGoogle Scholar
  58. Yokoyama Y, Lambeck K, de Deckker P, Johnston P, Fifield LK (2000) Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406:713–716PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2008

Authors and Affiliations

  • Seung-Chul Kim
    • 1
  • Jose A. Mejías
    • 2
  • Pesach Lubinsky
    • 1
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Departmento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain

Personalised recommendations