Journal of Plant Research

, Volume 121, Issue 3, pp 261–270

Extensive 5.8S nrDNA polymorphism in Mammillaria (Cactaceae) with special reference to the identification of pseudogenic internal transcribed spacer regions

Regular Paper

Abstract

The internal transcribed spacer (ITS) region (ITS1, 5.8S rDNA, ITS2) represents the most widely applied nuclear marker in eukaryotic phylogenetics. Although this region has been assumed to evolve in concert, the number of investigations revealing high degrees of intra-individual polymorphism connected with the presence of pseudogenes has risen. The 5.8S rDNA is the most important diagnostic marker for functionality of the ITS region. In Mammillaria, intra-individual 5.8S rDNA polymorphisms of up to 36% and up to nine different types have been found. Twenty-eight of 30 cloned genomic Mammillaria sequences were identified as putative pseudogenes. For the identification of pseudogenic ITS regions, in addition to formal tests based on substitution rates, we attempted to focus on functional features of the 5.8S rDNA (5.8S motif, secondary structure). The importance of functional data for the identification of pseudogenes is outlined and discussed. The identification of pseudogenes is essential, because they may cause erroneous phylogenies and taxonomic problems.

Keywords

5.8S rDNA Intra-individual variability Mammillaria Pseudogene Secondary structure 

Supplementary material

10265_2008_156_MOESM1_ESM.pdf (22 kb)
ESM (PDF 21 kb)

References

  1. Àlvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Andreasen K, Baldwin BG (2003) Nuclear ribosomal DNA sequence polymorphism and hybridization in checker mallows (Sidalcea, Malvaceae). Mol Phylogenet Evol 29:563–581PubMedCrossRefGoogle Scholar
  3. Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455PubMedCrossRefGoogle Scholar
  4. Baker WJ, Hedderson TA, Dransfield JU (2000) Molecular phylogentics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol 14:195–217PubMedCrossRefGoogle Scholar
  5. Blattner FR (2004) Phylogeny of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 33:289–299PubMedCrossRefGoogle Scholar
  6. Buckler IV ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832PubMedGoogle Scholar
  7. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du YS, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang ZD, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3:2CrossRefGoogle Scholar
  8. Carr TG, O’Neil K, Bailey CD (2006) Bootstrap hypothesis testing using BootHyp. http://biology-web.nmsu.edu/bailey/Boothyp.html
  9. Crooks GE, Hon G, Chandonia J, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCrossRefGoogle Scholar
  10. Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188CrossRefGoogle Scholar
  11. Elder Jr JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320PubMedCrossRefGoogle Scholar
  12. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6, distributed by the author, Department of Genome Sciences. University of Washington, SeattleGoogle Scholar
  13. Gardiner-Garden M, Sved JA, Frommer M (1992) DNA methylation in plant cells. J Mol Evol 34:219–230CrossRefGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  15. Harpke D (2005) Non-concerted ITS evolution and analysis of functional and non-functional 5.8S rRNA genes in genus Mammillaria (Cactaceae). Diploma thesis, Martin-Luther-University, HalleGoogle Scholar
  16. Harpke D, Peterson A (2006) Non-concerted ITS evolution in Mammillaria (Cactaceae). Mol Phylogenet Evol 41:579–593PubMedCrossRefGoogle Scholar
  17. Harpke D, Peterson A (2007) Quantitative PCR revealed a minority of ITS copies to be functional in Mammillaria (Cactaceae). Int J Plant Sci 168:1157–1160CrossRefGoogle Scholar
  18. Hartmann S, Nason JD, Bhattacharya D (2001) Extensive ribosomal DNA genic variation in the columnar cactus Lophocereus. J Mol Evol 53:124–134PubMedGoogle Scholar
  19. Hershkovitz MA, Zimmer EA (1997) On the evolutionary origins of the cacti. Taxon 46:217–232CrossRefGoogle Scholar
  20. Hershkovitz MA, Zimmer EA, Hahn WJ (1999) Ribosomal DNA sequences and angiosperm systematics. In: Hollingsworth PM, Bateman RM, Cornall RJ (eds) Molecular systematics and plant evolution. Taylor & Francis, London, pp 268–326Google Scholar
  21. Hughes CE, Bailey CD, Harris SA (2002) Divergent and reticulate species relationships in Leucaena (Fabaceae) inferred from multiple data sources: insights into polyploid origins and nrDNA polymorphism. Am J Bot 89:1057–1073CrossRefGoogle Scholar
  22. Jobes DV, Thien LB (1997) A conserved motif in the 58S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Plant Mol Biol Rep 15:326–334CrossRefGoogle Scholar
  23. Keller I, Chintauan-Marquier IC, Veltsos P, Nichols RA (2006) Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution. Genetics 174:863–874PubMedCrossRefGoogle Scholar
  24. Kim YD, Kim SH (1999) Phylogeny of Weigela and Diervilla (Caprifoliaceae) based on nuclear rDNA ITS sequences: biogeographic and taxonomic implications. J Plant Res 112:331–341CrossRefGoogle Scholar
  25. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  26. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in the Hominoidea. J Mol Evol 29:170–179PubMedCrossRefGoogle Scholar
  27. Kita Y, Ito M (2000) Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst Evol 225:1–13CrossRefGoogle Scholar
  28. Kluge AG, Farris JS (1969) Quantitative phyletics and evolution of Anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  29. Kumar S (1996) PHYLTEST: a program for testing phylogenetic hypothesis version 2.0. Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State UniversityGoogle Scholar
  30. Li W (1997) Molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  31. Li J, Ledger J, Ward T, Del Tredici P (2004) Phylogenetics of Calycanthaceae based on molecular and morphological data, with special reference to divergent paralogues of the nrDNA ITS region. Harv Pap Bot 9:69–82Google Scholar
  32. Liò P, Goldman N (1998) Models of molecular evolution and phylogeny. Genome Res 8:1233–1224PubMedGoogle Scholar
  33. Liu JS, Schardl CL (1994) A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol Biol 26:775–778PubMedCrossRefGoogle Scholar
  34. Márquez LM, Miller DJ, MacKenzie JB, Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–1086PubMedCrossRefGoogle Scholar
  35. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940PubMedCrossRefGoogle Scholar
  36. Mayol M, Rosselò JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet Evol 19:167–176PubMedCrossRefGoogle Scholar
  37. Muir G, Fleming CC, Schloetterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt) Liebl and Quercus robur L. Mol Biol Evol 18:112–119PubMedGoogle Scholar
  38. Peterson A, John H, Koch E, Peterson J (2004) A molecular phylogeny of the genus Gagea (Liliaceae) in Germany inferred from non-coding chloroplast and nuclear DNA sequences. Plant Syst Evol 245:145–162CrossRefGoogle Scholar
  39. Razafimandimbison SG, Kellogg EA, Bremer B (2004) Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Syst Biol 53:177–192PubMedCrossRefGoogle Scholar
  40. Ritz CM, Schmuths H, Wissemann V (2005) Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. J Hered 96:4–14PubMedCrossRefGoogle Scholar
  41. Ruggiero MV, Procaccini G (2004) The rDNA ITS region in the Lessepsian marine angiosperm Halophila stipulacea (Forssk.) Aschers. (Hydrocharitaceae): intragenomic variability and putative pseudogenic sequences. J Mol Evol 58:115–121PubMedCrossRefGoogle Scholar
  42. Schnare MN, Damsberger SH, Gray MW, Gutell RR (1996) Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. J Mol Biol 256:701–719PubMedCrossRefGoogle Scholar
  43. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100PubMedCrossRefGoogle Scholar
  44. Shaner MC, Blair IM, Schneider TD (1993) Sequence logos: a powerful, yet simple, tool. In: Mudge TN et al (eds) Proceedings of the 26th Annual Hawaii International Conference on System Sciences. Architecture and biotechnology computing, vol 1. IEEE Computer Society Press, Los Alamitos, pp 813–821Google Scholar
  45. Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170CrossRefGoogle Scholar
  46. Suh YB, Thien LB, Zimmer EA (1992) Nucleotide sequences of the internal transcribed spacers and 58S rRNA gene in Canella winterana (Magnoliales; Canellaceae). Nucleic Acids Res 20:6101–6102PubMedCrossRefGoogle Scholar
  47. Takezaki N, Razhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833PubMedGoogle Scholar
  48. Wissemann V (2003) Hybridization and the evolution of the nrITS spacer region. In: Sharma AK, Sharma A (eds) Plant genome, biodiversity and evolution. Part A: phanerogams, vol. 1. Sci Publ Inc., Enfield, pp 57–71Google Scholar
  49. Wissemann V, Ritz CM (2005) The genus Rosa (Rosideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbsL intergenic spacer (IGS) versus conventional taxonomy. Bot J Linn Soc 147:275–290CrossRefGoogle Scholar
  50. Won H, Renner SS (2005) The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Mol Phylogenet Evol 36:581–597PubMedCrossRefGoogle Scholar
  51. Wuyts J, De Rijk P, Van de Peer Y, Winkelmans T, De Wachter R (2001) The European large subunit ribosomal RNA database. Nucleic Acids Res 29:175–177PubMedCrossRefGoogle Scholar
  52. Yokota Y, Kawata T, Iida Y, Kato A, Tanifuji S (1989) Nucleotide sequences of the 58S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J Mol Evol 29:294–301PubMedCrossRefGoogle Scholar
  53. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2008

Authors and Affiliations

  1. 1.BiozentrumMartin Luther University of Halle-WittenbergHalle/SaaleGermany

Personalised recommendations