Advertisement

Journal of Plant Research

, Volume 121, Issue 3, pp 311–318 | Cite as

Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress

  • Kamel Hessini
  • Mohamed Ghandour
  • Ali Albouchi
  • Abdelaziz Soltani
  • Koyro Hans Werner
  • Chedly Abdelly
Regular Paper

Abstract

The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.

Keywords

Gas exchange Osmotic adjustment Spartina alterniflora Water relations 

References

  1. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  2. Bates LS, Waldren RP, Teare D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  3. Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97CrossRefGoogle Scholar
  4. Bouyoucos (1983) Les propriétés physiques du sol dépendent de sa texture et de sa structure. In: Les bases de la production végétale. Tome 1. Collection Sciences et Technique agricoles, pp 67–87Google Scholar
  5. Bradley PM, Morris JT (1991) Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. J Exp Bot 42:1525–1532CrossRefGoogle Scholar
  6. Brown CE, Pezeshki SR (2007) Threshold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying. J Plant Physiol 164:274–282PubMedCrossRefGoogle Scholar
  7. Brown CE, Pezeshki SR, Delaune RD (2006) The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environ Exp Bot 58:140–146CrossRefGoogle Scholar
  8. Cavalieri AJ (1983) Proline and glycine betaine accumulation by Spartina alterniflora (Loisel) in response to NaCl and nitrogen in a control environment. Oecologia 57:20–24CrossRefGoogle Scholar
  9. Colmer TD, Teresa WM, Läuchli FA, Higashi RM (1996) Interactive effects of salinity, nitrogen and sulphur on the organic solutes in Spartina alterniflora leaf blades. J Exp Bot 47:369–375CrossRefGoogle Scholar
  10. Dichio B, Xiloyannis C, Angelopoulos K, Nuzzo V, Bufo AB, Celano G (2003) Drought-induced variations of water relations parameters in olea europea. Plant Soil 257:381–389CrossRefGoogle Scholar
  11. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9CrossRefGoogle Scholar
  12. Fleury P, Leclerc M (1943) La méthode nitro-vanado-molybdique de misson pour le dosage colorimétrique du phosphore. Son intérêt en biochimie. Bull Soc Chem Biol 25:201–205Google Scholar
  13. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonw Bur Horticult Tech Commun 22:431–446Google Scholar
  14. Hu ZhH, Qin P (1998) Effects of total flavonoids of Spartina alterniflora on serum lipids in vivo. Mar Sci 2:16–18Google Scholar
  15. Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci 165:837–844CrossRefGoogle Scholar
  16. Koyro H.-W, Huchzermeyer B (2004a) Ecophysiological mechanisms leading to salinity tolerance–screening of cashcrop halophytes. Recent Res Dev Plant Sci 1:187–207Google Scholar
  17. Lin GL, Li DC (1999) Experiment of feeding goats with Spartina alterniflora. Fujian Pasturage Vet 21(4):4–14Google Scholar
  18. Liu JP, Tian ZhK (2002) Clean sewage with Spartina alterniflora. Hebei Environ Sci 10(2):45–48Google Scholar
  19. Martínez JP, Lutts S, Schanck A, Bajji M, Kinet JM (2004) Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L?. J Plant Physiol 161:1041–1051PubMedCrossRefGoogle Scholar
  20. Martínez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38CrossRefGoogle Scholar
  21. Mediavilla S, Santiago H, Escudero A (2002) Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species. Photosynthetica 40(4):553–559CrossRefGoogle Scholar
  22. Morales MA, Sánchez-Blanco MJ, Olmos E, Torrecillas A, Alarcón JJ (1998) Changes in the growth, leaf water relations and cell ultraestructure in Argyranthemum coronopifolium plants under saline conditions. J Plant Physiol 153:174–180Google Scholar
  23. Mustard S, Renault (2004) Effects of NaCl on water relations and cell wall elasticity and composition of red-osier dogwood (Cornus stolonifera) seedling. Physiol Plant 121:265–271PubMedCrossRefGoogle Scholar
  24. Nardini A, Lo gullo MA, Salleo S (1999) Competitive strategies for water availability in two Mediterranean Quercus species. Plant Cell Environ 22:109–116CrossRefGoogle Scholar
  25. Patakas A, Nikolaou N, Zioziou K, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367CrossRefGoogle Scholar
  26. Patakas A, Notsakis B (1999) Osmotic adjustment and partitioning of turgor responses to drought in grapevines leaves. Am J Enol Vitic 50:76–80Google Scholar
  27. Pomeroy LR, Wiegert RG (1981) The ecology of salt marsh. Springer, New YorkGoogle Scholar
  28. Sánchez FJ, Andrés EF, Tenorio JL, Ayerbe L (2004) Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Res 86:81–90CrossRefGoogle Scholar
  29. Save R, Castell C, Terradas J (1999) Gas exchange and water relations. In: Rodá F, Retama J, Gracia A, Bellot J (eds) Ecology of Mediterranean evergreen ecological studies, Springer, Berlin, pp 135–147Google Scholar
  30. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen ED (1965) Sap pressure in vascular plants. Science 148:339–346PubMedCrossRefGoogle Scholar
  31. Serrano L, Peñuelas J, Ogaya R, Savé R (2005) Tissue-water relations of two co-occurring evergreen Mediterranean species in response to seasonal and experimental drought conditions. J Plant Res 118:263–269PubMedCrossRefGoogle Scholar
  32. Soltani A, Hajji M, Grignon C (1992) Bilan des échanges ioniques en milieu NO3/NH4 et coûts énergétiques de la croissance chez l’orge (Hordeum vulgare L.). Agronomie 12:723–732CrossRefGoogle Scholar
  33. Staub AM (1963) Extraction, identification et dosages des glucides dans les extraits d’organes et les corps bactériens. In: Masson et Compagnie (eds) Techniques de laboratoire, Tome 1 et 2: Paris, pp 1307–1366Google Scholar
  34. Stoyanov ZZ (2005) Effect of water stress on leaf water relations of young bean plants. Cent Eur Agric 6:5–14Google Scholar
  35. Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG (2006) Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am J Bot 93:1784–1790CrossRefGoogle Scholar
  36. Wang BCh, Yang QC, Lin LZh (1996) Marking Spartina alterniflora into green fertilizer and fodder for rabbits. J Zhejiang Agric Sci (1):37–38Google Scholar
  37. Zheng GR, Xu KM (1994) Experiment of feeding fowls with Spartina alterniflora. Poult Husb Dis Control (6):21–22Google Scholar
  38. Zheng GR, Zhang R (1995) Experiment of feeding pigs with Spartina alterniflora Fodder Stud (5):23–24Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2008

Authors and Affiliations

  • Kamel Hessini
    • 1
  • Mohamed Ghandour
    • 1
  • Ali Albouchi
    • 2
  • Abdelaziz Soltani
    • 1
  • Koyro Hans Werner
    • 3
  • Chedly Abdelly
    • 1
  1. 1.Laboratoire d’Adaptation des Plantes aux Stress AbiotiquesCentre de Biotechnologie Borj CédriaHammam-LifTunisia
  2. 2.Institut National de Recherches en Génie Rural, Eaux et ForêtsArianaTunisia
  3. 3.Institute for Plant EcologyJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations