Journal of Plant Research

, Volume 121, Issue 1, pp 73–82 | Cite as

Thermogenesis and flowering biology of Colocasia gigantea, Araceae

  • Anton Ivancic
  • Olivier Roupsard
  • José Quero Garcia
  • Marie Melteras
  • Tari Molisale
  • Serge Tara
  • Vincent Lebot
Regular Paper


The thermogenesis and flowering biology of Colocasia gigantea (Blume) Hook. f. were studied from December 2005 to February 2006 on Espiritu Santo, Vanuatu (South Pacific). Endogenous thermogenesis was measured in two ways: (1) continuously over 5-day periods, and (2) over 3 h during maximum heating. The study showed that heat was generated by the male part of the spadix and probably the lower zone of the sterile region. The temperatures of the male part peaked twice: (1) between 0625 and 0640 (during the female phase) and (2) 24 h later (during the male phase). The average maximum temperature was 42.25 ± 0.14°C during the female phase (16.63°C above the ambient temperature) and 35.14 ± 0.22°C during the male phase (10.61°C above the ambient temperature). In the lower zone of the sterile region, thermogenesis was documented only during the female phase. The average maximum temperature was 35.44 ± 0.41°C (9.82°C above the ambient temperature). Thermogenic heating appeared to be closely associated with the activities of pollinating insects.


Colocasia gigantea Flowering biology Inflorescence morphology Pollination biology Thermogenesis 


  1. Albre J, Quilichini A, Gibernau M (2003) Pollination ecology of Arum italicum (Araceae). Bot J Linn Soc 141:205–214CrossRefGoogle Scholar
  2. Barabé D, Gibernau M (2000) Étude comparative de la production de chaleur chez quelques Araceae. Adansonia 22:253–263Google Scholar
  3. Barabé D, Lacroix D, Gibernau M (2003) Development of the flower and inflorescence of Arum italicum (Araceae). Can J Bot 81:622–632CrossRefGoogle Scholar
  4. Cai X-Z, Long C-L, Liu K-M (2006) Colocasia yunnanensis (Araceae), a new species from Yunnan, China. Ann Bot Fenn 43:139–142Google Scholar
  5. Chouteau M, Barabé D, Gibernau M (2007) Thermogenesis in Syngonium (Araceae). Can J Bot 85:184–190CrossRefGoogle Scholar
  6. Gibernau M, Barabé D (2000) Thermogenesis in three Philodendron species (Araceae) of French Guiana. Can J Bot 78:685–689CrossRefGoogle Scholar
  7. Gibernau M, Barabé D (2002) Pollination ecology of Philodendron squamiferum (Araceae). Can J Bot 80:316–320CrossRefGoogle Scholar
  8. Gibernau M, Barabé D, Labat D, Cerdan P, Dejean L (2003) Reproductive biology of Montrichardia arborescens (Araceae) in French Guiana. J Trop Ecol 19:103–107Google Scholar
  9. Gibernau M, Barabé D, Moisson M, Trombe A (2005) Physical constraints on temperature difference in some thermogenic aroid inflorescences. Ann Bot 96:117–125PubMedCrossRefGoogle Scholar
  10. Ivancic A, Lebot V (1999) Botany and genetics of New Caledonian wild taro, Colocasia esculenta. Pac Sci 53:273–285Google Scholar
  11. Ivancic A, Lebot V (2000) The genetics and breeding of taro. Series Rèperes. CIRAD, MontpellierGoogle Scholar
  12. Ivancic A, Lebot V, Roupsard O, Quero Garcia J, Okpul T (2004) Thermogenic flowering of taro (Colocasia esculenta, Araceae). Can J Bot 82:1557–1565CrossRefGoogle Scholar
  13. Ivancic A, Roupsard O, Quero Garcia J, Lebot V, Pochyla V, Okpul T (2005) Thermogenic flowering of the giant taro (Alocasia macrorrhizos, Araceae). Can J Bot 83:647–655CrossRefGoogle Scholar
  14. Kramadibrata K, Hambali GG (1983) Peranan beberapa serangga pengunjung perbungaan pada penyerbukan Colocasia esculenta var. esculenta dan C. gigantea (The roles of some insects in pollination of Colocasia esculenta var. esculenta and C. gigantea). Berita Biol 2:143–146Google Scholar
  15. de Lamarck J-B (1778) Flore française. Tome 3; L’Imprimerie Royale, Paris, p 538Google Scholar
  16. Lamprecht I, Schmolz E, Blanco L, Romero CM (2002) Flower ovens: thermal investigations on heat producing plants. Thermochim Acta 391:107–118CrossRefGoogle Scholar
  17. Leick E (1915) Die Erwärmungstypen der Araceen und ihre blütenbiologische Deutung. Berichte der Deutschen Botanischen Gesellschaft 33:518–536Google Scholar
  18. Maia ACD, Schlindwein C (2006) Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): a well-established pollination system in the northern Atlantic rainforest of Pernambuco, Brazil. Plant Biol (Stuttg) 8:529–534CrossRefGoogle Scholar
  19. Matthews PJ (2004) Taro. In: Krech S III, McNeill JR, Merchant C (eds) Encyclopedia of world environmental history, vol 3. Routledge, New York London, pp 1185–1186Google Scholar
  20. Meeuse BJD, Raskin I (1988) Sexual reproduction in the arum family, with emphasis on thermogenicity. Sex Plant Reprod 1:3–15CrossRefGoogle Scholar
  21. Miyake T, Yafuso M (2003) Floral scents affect reproductive success in fly-pollinated Alocasia odora (Araceae). Am J Bot 90:370–376CrossRefGoogle Scholar
  22. Nagy KA, Odell DK, Seymour RS (1972) Temperature regulation by the inflorescence of Philodendron. Science 178:1195–1197PubMedCrossRefGoogle Scholar
  23. Naiola BP, Danimihardja S, Imamuddin H (1984) Flowering behavior in Colocasia gigantea Hook. f. In: Shideler FS, Rincon H (eds) Proceedings of the sixth symposium of the international society for tropical root crops, 21–26 February 1983. International Potato Center (CIP), Lima, Peru, p 131Google Scholar
  24. Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci U S A 86:2214–2218PubMedCrossRefGoogle Scholar
  25. Schmucker T (1925) Beiträge zur Biologie und Physiologie von Arum maculatum. Flora 118/119:460–475Google Scholar
  26. Seymour R (1999) Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J Exp Bot 50:845–852CrossRefGoogle Scholar
  27. Seymour RS, Blaylock AJ (1999) Switching off the heater: influence of ambient temperature on thermoregulation by eastern skunk cabbage Symplocarpus foetidus. J Exp Bot 50:1525–1532CrossRefGoogle Scholar
  28. Seymour RS, Schultze-Motel P (1999) Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proc R Soc Lond B Biol Sci 266/1432:1975–1983CrossRefGoogle Scholar
  29. Seymour RS, Gibernau M, Ito K (2003) Thermogenesis and respiration of the dead horse arum Helicodiceros muscivorus, a pseudo-thermoregulatory aroid associated with fly pollination. Funct Ecol 17:886–894CrossRefGoogle Scholar
  30. Skubatz H, Nelson TA, Meeuse BJD, Dong AM, Bendich AJ (1990) Infrared thermography of Arum lily inflorescences. Planta 182:432–436CrossRefGoogle Scholar
  31. Skubatz H, Nelson TA, Meeuse BJD, Bendich AJ (1991) Heat production in the voodoo lily (Sauromatum guttatum) as monitored by infrared thermography. Plant Physiol 95:1084–1088PubMedCrossRefGoogle Scholar
  32. Takenaka K, Yin J-T, Wen S-Y, Toda MJ (2006) Pollination mutualism between a new species of the genus Colocasiomyia de Meijere (Diptera: Drosophilidae) and Steudnera colocasiifolia (Araceae) in Yunnan, China. Entomol Sci 9:79–91CrossRefGoogle Scholar
  33. Weightman B (1989) Agriculture in Vanuatu—a historical review. The British Friends of Vanuatu. Grosvenor, PortsmouthGoogle Scholar
  34. Yafuso M (1993) Thermogenesis of Alocasia odora (Araceae) and the role of Colocasiomyia Flies (Diptera: Drosophilidae) as cross-pollinators. Popul Ecol 22/3:601–606Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2007

Authors and Affiliations

  • Anton Ivancic
    • 1
  • Olivier Roupsard
    • 2
  • José Quero Garcia
    • 3
  • Marie Melteras
    • 2
  • Tari Molisale
    • 2
  • Serge Tara
    • 2
  • Vincent Lebot
    • 4
  1. 1.Faculty of AgricultureUniversity of MariborMariborSlovenia
  2. 2.Vanuatu Agricultural Research and Training Center (VARTC)Espiritu SantoVanuatu
  3. 3.INRA, Unité de Recherche sure les Espèces FruitièresVillenave D’OrnonFrance
  4. 4.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)Port VilaVanuatu

Personalised recommendations