Journal of Plant Research

, Volume 121, Issue 1, pp 125–131 | Cite as

Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba

  • Vanessa Melhorn
  • Kunimi Matsumi
  • Hanae Koiwai
  • Keiichi Ikegami
  • Masanori Okamoto
  • Eiji Nambara
  • Florian Bittner
  • Tomokazu Koshiba
Short Communication

Abstract

Abscisic acid (ABA) regulates stomatal closure in response to water loss. Here, we examined the competence of guard cells to synthesize ABA, using two Arabidopsis ABA biosynthetic enzymes. 35S pro::AtNCED3-GFP and AAO3-GFP were introduced into guard cells of broad bean leaves. AtNCED3-GFP expression was detected at the chloroplasts, whereas green fluorescent protein (GFP) and AAO3-GFP were in the cytosol. The stomatal aperture was decreased in AtNCED3-GFP- and AAO3-GFP-transformed guard cells. This indicated that ABA biosynthesis is stimulated by heterologous expression of AtNCED3 and Arabidopsis aldehyde oxidase 3 (AAO3) proteins, which both seem to be regulatory enzymes for ABA biosynthesis in these cells. Furthermore, stomatal closure by the expression of AtNCED3 and AAO3 suggested that the substrates of the enzymes are present and native ABA-biosynthesis enzymes are active in guard cells.

Keywords

Abscisic acid Arabidopsis aldehyde oxidase 3 (AAO3) Broad bean 9-cis-epoxycarotenoid dioxygenase (NCED) Stomatal closure Transient expression 

Supplementary material

10265_2007_127_MOESM1_ESM.ppt (127 kb)
Supplementary Figs. S1–3 (PPT 172 KB)

References

  1. Assmann SM (2004) Abscisic acid signal transduction in stomatal responses. In: Davies PJ (ed) Plant hormones—biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 391–412Google Scholar
  2. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743PubMedCrossRefGoogle Scholar
  3. Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330PubMedCrossRefGoogle Scholar
  4. Christmann A, Hoffmann T, Teplova I, Grill E, Muller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219PubMedCrossRefGoogle Scholar
  5. Else MA, Taylor JM, Atkinson CJ (2006) Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA. J Exp Bot 57:3349–3357PubMedCrossRefGoogle Scholar
  6. Ghelis T, Dellis O, Jeannette E, Bardat F, Cornel D, Miginiac E, Rona JP, Sotta B (2000) Abscisic acid specific expression of RAB18 involves activation of anion channels in Arabidopsis thaliana suspension cells. FEBS Lett 474:43–47PubMedCrossRefGoogle Scholar
  7. Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972PubMedCrossRefGoogle Scholar
  8. Harris MJ, Outlaw WH Jr, Mertens R, Weiler EW (1988) Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc Natl Acad Sci USA 85:2584–2588PubMedCrossRefGoogle Scholar
  9. Hornberg C, Weiler E (1984) High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310:321–324CrossRefGoogle Scholar
  10. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333PubMedCrossRefGoogle Scholar
  11. Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707PubMedCrossRefGoogle Scholar
  12. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120PubMedCrossRefGoogle Scholar
  13. Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203–4208PubMedCrossRefGoogle Scholar
  14. Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716PubMedCrossRefGoogle Scholar
  15. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  16. Outlaw WH Jr (2003) Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22:503–529CrossRefGoogle Scholar
  17. Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479CrossRefGoogle Scholar
  18. Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361PubMedCrossRefGoogle Scholar
  19. Razem FA, Luo M, Liu JH, Abrams SR, Hill RD (2004) Purification and characterization of a barley aleurone abscisic acid-binding protein. J Biol Chem 279:9922–9929PubMedCrossRefGoogle Scholar
  20. Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294PubMedCrossRefGoogle Scholar
  21. Schwartz A, Wu W, Tucker EB, Assmann SM (1994) Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci USA 91:4019–4023PubMedCrossRefGoogle Scholar
  22. Schwartz S, Leon-Kloosterziel KM, Koorneef M, Zeevart JA (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166PubMedCrossRefGoogle Scholar
  23. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48PubMedCrossRefGoogle Scholar
  24. Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T (2000a) The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913PubMedCrossRefGoogle Scholar
  25. Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000b) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488PubMedCrossRefGoogle Scholar
  26. Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826PubMedCrossRefGoogle Scholar
  27. Tan BC, Cline K, McCarty DR (2001) Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant J 27:373–382PubMedCrossRefGoogle Scholar
  28. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56PubMedCrossRefGoogle Scholar
  29. Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374PubMedCrossRefGoogle Scholar
  30. Yamazaki D, Yoshida S, Asami T, Kuchitsu K (2003) Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant J 35:129–139PubMedCrossRefGoogle Scholar
  31. Zhang DP, Wu ZY, Li XY, Zhao ZX (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128:714–725PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2007

Authors and Affiliations

  • Vanessa Melhorn
    • 1
    • 2
  • Kunimi Matsumi
    • 1
  • Hanae Koiwai
    • 1
    • 3
  • Keiichi Ikegami
    • 1
  • Masanori Okamoto
    • 1
    • 4
    • 5
  • Eiji Nambara
    • 4
  • Florian Bittner
    • 2
  • Tomokazu Koshiba
    • 1
  1. 1.Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
  2. 2.Department of Plant BiologyTechnical University of BraunschweigBraunschweigGermany
  3. 3.Division of Plant SciencesNational Institute of Agrobiological SciencesTsukubaJapan
  4. 4.Growth Regulation Research GroupRIKEN Plant Science CenterYokohamaJapan
  5. 5.Plant Functional Genomics Research GroupRIKEN Plant Science CenterYokohamaJapan

Personalised recommendations