Journal of Plant Research

, Volume 120, Issue 6, pp 661–670 | Cite as

Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico

Regular Paper


A new chlorarachniophyte, Norrisiella sphaerica S. Ota et K. Ishida gen. et sp. nov., from the coast of Baja California, Mexico is described. We examined its morphology, ultrastructure, and life cycle in detail, using light microscopy, transmission electron microscopy, and time-lapse videomicroscopy. We found that this chlorarachniophyte possessed the following characteristics: (1) vegetative cells were coccoid and possessed a cell wall, (2) a pyrenoid was slightly invaded by plate-like periplastidial compartment from the tip of the pyrenoid, (3) a nucleomorph was located near the pyrenoid base in the periplastidial compartment, (4) cells reproduced vegetatively via autospores, and (5) a flagellate stage was present in the life cycle. This combination of characteristics differs from any of the described chlorarachniophyte genera, and therefore a new genus is established. Fluorescent microscopic observations suggested that the alga formed multinucleate cells prior to forming autospores. Time-lapse observations during autospore formation showed that cytokinesis occurred simultaneously in the multinucleate cells. Zoospores were also produced, and video sequences captured the release of zoospores from coccoid cells.


Alga Autospore Chlorarachniophyceae Life cycle Taxonomy Time-lapse video microscopy 



We are grateful to Dr. Yoshiaki Hara, Yamagata University, for his kind help with the field trip and TEM facilities. We are most grateful to Dr. Robert A. Andersen, Bigelow Laboratory, for critical comments and English corrections. This work was supported in part by Grant-in-Aid for Scientific Research (#18570084) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary material

Supplementary movie 1 (MOV 2334 kb)

Supplementary movie 2 (MOV 9274 kb)

Supplementary movie 3 (MOV 8927 kb)


  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, Mccourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor FJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  2. Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Boston, p 578Google Scholar
  3. Bass D, Moreira D, López-García P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:149–161PubMedCrossRefGoogle Scholar
  4. Beutlich A, Schnetter R (1993) The life cycle of Cryptochlora perforans (Chlorarachniophyta). Bot Acta 106:441–447Google Scholar
  5. Bhattacharya D, Helmchen T, Melkonian M (1995) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. J Eukaryot Microbiol 42:65–69PubMedCrossRefGoogle Scholar
  6. Calderon-Saenz E, Schnetter R (1987) Cryptochlora perforans, a new genus and species of algae (Chlorarachniophyta), capable of penetrating dead algal filaments. Plant Syst Evol 158:69–71CrossRefGoogle Scholar
  7. Calderon-Saenz E, Schnetter R (1989) Morphology, biology, and systematics of Cryptochlora perforans (Chlorarachniophyta), a phagotrophic marine alga. Plant Syst Evol 163:165–176CrossRefGoogle Scholar
  8. Cavalier-Smith T, Chao EE (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358PubMedCrossRefGoogle Scholar
  9. Dietz C, Ehlers K, Wilhelm C, Gil-Rodríguez MC, Schnetter R (2003) Lotharella polymorpha sp. nov. (Chlorarachniophyta) from the coast of Portugal. Phycologia 42:582–593CrossRefGoogle Scholar
  10. Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Arch Protistenkd 69:615–636Google Scholar
  11. Gilson PR, McFadden GI (1999) Molecular, morphological and phylogenetic characterization of six chlorarachniophyte strains. Phycol Res 47:7–19CrossRefGoogle Scholar
  12. Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330CrossRefGoogle Scholar
  13. Ishida K, Hara Y (1994) Taxonomic studies on the Chlorarachniophyta. I. Chlorarachnion globosum sp. nov. Phycologia 33:351–358Google Scholar
  14. Ishida K, Nakayama T, Hara Y (1996) Taxonomic studies on the Chlorarachniophyta. II. Generic delimitation of the chlorarachniophytes and description of Gymnochlora stellata gen. et sp. nov. and Lotharella gen. nov. Phycol Res 44:37–45CrossRefGoogle Scholar
  15. Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J Mol Evol 45:682–687PubMedCrossRefGoogle Scholar
  16. Ishida K, Green BR, Cavalier-Smith T (1999) Diversification of a chimaeric algal group, the chlorarachniophytes: phylogeny of nuclear and nucleomorph small-subunit rRNA genes. Mol Biol Evol 16:321–331Google Scholar
  17. Ishida K, Ishida N, Hara Y (2000) Lotharella amoeboformis sp. nov.: a new species of chlorarachniophytes from Japan. Phycol Res 48:221–229CrossRefGoogle Scholar
  18. Kasai F, Kawachi M, Erata M, Watanabe MM (2004) NIES-collection list of strains: microalgae and protozoa, 7th edn. The microbial culture collection, the National Institute for Environmental Studies, Tsukuba, Japan, p 54Google Scholar
  19. Keeling PJ, Deane JA, McFadden GI (1998) The phylogenetic position of alpha- and beta-tubulins from the Chlorarachnion host and Cercomonas (Cercozoa). J Eukaryot Microbiol 45:561–570PubMedCrossRefGoogle Scholar
  20. Keeling PJ (2001) Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home? Mol Biol Evol 18:1551–1557PubMedGoogle Scholar
  21. Ludwig M, Gibbs SP (1989) Evidence that the nucleomorphs of Chlorarachnion reptans (Chlorarachniophyceae) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence. J Phycol 25:385–394CrossRefGoogle Scholar
  22. McFadden GI, Gilson PR, Hofmann CJB, Adcock GJ, Maier U-G (1994) Evidence that an amoeba acquired a chloroplast by relating part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91:3690–3694PubMedCrossRefGoogle Scholar
  23. McFadden GI, Gilson PR, Waller RF (1995) Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. Arch Protistenkd 145:231–239Google Scholar
  24. Miyamura S, Hori T (1991) DNA is present in the pyrenoid core of the siphonous green algae of the genus Caulerpa and yellow–green algae of the genus Pseudodichotomosiphon. Protoplasma 161:192–196CrossRefGoogle Scholar
  25. Moestrup Ø, Sengco M (2001) Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. J Phycol 37:624–646CrossRefGoogle Scholar
  26. Ota S, Ueda K, Ishida K (2005) Lotharella vacuolata sp. nov., a new species of chlorarachniophyte algae, and time-lapse video observations on its unique post-cell division behavior. Phycol Res 53:275–286CrossRefGoogle Scholar
  27. Ota S, Ueda K, Ishida K (2007) Taxonomic study of Bigelowiella longifila sp. nov. (Chlorarachniophyta) and a time-lapse video observation on the unique migration of amoeboid cells. J Phycol 43:333–343CrossRefGoogle Scholar
  28. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212Google Scholar
  29. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  30. Van de Peer Y, Rensing SA, Maier U-G, De Wachter R (1996) Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci USA 93:7732–7736PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2007

Authors and Affiliations

  1. 1.Division of Life Sciences, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  2. 2.Laboratory of Plant Systematics and Phylogeny, Institute of Biological Sciences, Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations