Journal of Plant Research

, Volume 120, Issue 6, pp 721–725

Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient

  • Peter Schönswetter
  • Margarita Lachmayer
  • Christian Lettner
  • David Prehsler
  • Stefanie Rechnitzer
  • Dieter S. Reich
  • Michaela Sonnleitner
  • Iris Wagner
  • Karl Hülber
  • Gerald M. Schneeweiss
  • Pavel Trávníček
  • Jan Suda
Short Communication

Abstract

We explored the fine-scale distribution of cytotypes of the mountain plant Senecio carniolicus along an altitudinal transect in the Eastern Alps. Cytotypes showed a statistically significant altitudinal segregation with diploids exclusively found in the upper part of the transect, whereas diploids and hexaploids co-occurred in the lower range. Analysis of accompanying plant assemblages revealed significant differences between cytotypes along the entire transect but not within the lower part only, where both cytotypes co-occur. This suggests the presence of ecological differentiation between cytotypes with the diploid possessing the broader ecological niche. No tetraploids were detected, indicating the presence of strong crossing barriers.

Keywords

Autopolyploidy Contact zones Cytotype mixture Eastern Alps Flow cytometry 

Supplementary material

10265_2007_108_MOESM1_ESM.doc (546 kb)
Supplementary Tables S 1, 2 (DOC 545 kb)

References

  1. Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783–1788Google Scholar
  2. Baack EJ (2005) Ecological factors influencing tetraploid establishment in snow buttercups (Ranunculus adoneus, Ranunculaceae): minority cytotype exclusion and barriers to triploid formation. Am J Bot 92:1827–1835Google Scholar
  3. Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536CrossRefGoogle Scholar
  4. Burton TL, Husband BC (2000) Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: Mechanisms of inviability and implications for polyploid evolution. Evolution 54:1182–1191PubMedGoogle Scholar
  5. Ellenberg H (1996) Die Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, StuttgartGoogle Scholar
  6. Felber F (1991) Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J Evol Biol 4:195–207CrossRefGoogle Scholar
  7. Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540CrossRefGoogle Scholar
  8. Fischer MA, Adler W, Oswald K (2005) Exkursionsflora für Österreich, Liechtenstein und Südtirol. 2nd edn. Land Oberösterreich, Biologiezentrum der OÖ Landesmuseen, LinzGoogle Scholar
  9. Fowler NL, Levin DA (1984) Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Naturalist 124:703–711CrossRefGoogle Scholar
  10. Gauthier P, Lumaret R, Bédécarrats A (1998) Genetic variation and gene flow in alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/ L.corniculatus L.). 1. Insights from morphological and allozyme markers. Heredity 80:683–693CrossRefGoogle Scholar
  11. Hardy OJ, Vanderhoeven S, De Loose M, Meerts P (2000) Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytol 146:281–290CrossRefGoogle Scholar
  12. Husband BC, Schemske DW (1998) Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694CrossRefGoogle Scholar
  13. Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701CrossRefGoogle Scholar
  14. Husband BC, Schemske DW, Burton TL, Goodwillie C (2002) Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proc R Soc London 269:2565–2571CrossRefGoogle Scholar
  15. Johnson MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). Int J Plant Sci 164:703–710CrossRefGoogle Scholar
  16. Lumaret R, Guillerm JL, Delay J, Loutfi AAL, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73:436–446CrossRefGoogle Scholar
  17. Mable BK (2003) Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci 8:582–590PubMedCrossRefGoogle Scholar
  18. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  19. Oksanen J, Kindt R, Legendre P, O’Hara RB (2007) vegan: Community Ecology Package. R package version 1.8-5. http://www.cran.r-project.org
  20. Petit C, Thompson JD (1997) Variation in phenotypic response to light availability between diploid and tetraploid populations of the perennial grass Arrhenatherum elatius from open and woodland sites. J Ecol 85:657–667CrossRefGoogle Scholar
  21. Petit C, Lesbros P, Ge X, Thompson JD (1997) Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrhenatherum elatius (Poaceae). Heredity 79:31–40CrossRefGoogle Scholar
  22. R Developement Core Team (2006) R: A language and environment for statistical computing. R-Cran version 2.4.1. http://www.cran.r-project.org
  23. Roberts DW (2006) labdsv: Laboratory for Dynamic Synthetic Vegephenomenology. R package version 1.2-2. http://www.ecology.msu.montana.edu/labdsv/R
  24. Rodríguez DJ (1996) A model for the establishment of polyploidy in plants. Am Naturalist 147:33–46CrossRefGoogle Scholar
  25. Soltis PS (2005) Ancient and recent polyploidy in angiosperms. New Phytol 166:5–8PubMedCrossRefGoogle Scholar
  26. Suda J, Trávníček P (2006) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hyun W, Nolan J, Orfao A, Rabinovitch P (eds) Current protocols in cytometry. Unit 7.30. Wiley, New York, pp 7.30.1–7.30.14Google Scholar
  27. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss G, Trávníček P, Schönswetter P (2007) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus Willd. (Asteraceae). Am J Bot 94:1391–1401Google Scholar
  28. Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307CrossRefGoogle Scholar
  29. Van Dijk P, Bijlsma R (1994) Simulations of flowering time displacement between cytotypes that form inviable hybrids. Heredity 72:522–535Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2007

Authors and Affiliations

  • Peter Schönswetter
    • 1
  • Margarita Lachmayer
    • 2
  • Christian Lettner
    • 3
  • David Prehsler
    • 2
  • Stefanie Rechnitzer
    • 3
  • Dieter S. Reich
    • 2
  • Michaela Sonnleitner
    • 3
  • Iris Wagner
    • 3
  • Karl Hülber
    • 4
  • Gerald M. Schneeweiss
    • 1
  • Pavel Trávníček
    • 5
    • 6
  • Jan Suda
    • 5
    • 6
  1. 1.Department of Biogeography and Botanical Garden, Faculty Centre BotanyUniversity of ViennaViennaAustria
  2. 2.Department of Systematic and Evolutionary Botany, Faculty Centre BotanyUniversity of ViennaViennaAustria
  3. 3.Department of Conservation Biology, Vegetation Ecology and Landscape EcologyUniversity of ViennaViennaAustria
  4. 4.Vienna Institute for Nature Conservation and AnalysesViennaAustria
  5. 5.Department of Botany, Faculty of ScienceCharles University in PraguePragueCzech Republic
  6. 6.Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice 1Czech Republic

Personalised recommendations