Advertisement

Journal of Plant Research

, Volume 120, Issue 3, pp 385–397 | Cite as

Phylogenetic analysis of the genus Petunia (Solanaceae) based on the sequence of the Hf1 gene

  • Sumei Chen
  • Kiyoshi Matsubara
  • Takahiro Omori
  • Hisashi Kokubun
  • Hiroaki Kodama
  • Hitoshi Watanabe
  • Goro Hashimoto
  • Eduardo Marchesi
  • Laura Bullrich
  • Toshio AndoEmail author
Regular Paper

Abstract

Polymerase chain reaction fragment length polymorphisms and nucleotide sequences for a cytochrome P450 gene encoding flavonoid-3′,5′-hydroxylase, Hf1, were studied in 19 natural taxa of Petunia. Natural Petunia taxa were classified into six groups based on major insertion or deletion events that occurred only in intron II of the locus. The maximum parsimony method was used to calculate strict consensus trees based on nucleotide sequences in selected regions of the Hf1 locus. Petunia taxa were divided into two major clades in the phylogenetic trees. Petunia axillaris (including three subspecies), P. exserta, and P. occidentalis formed a clade with 100% bootstrap support. This clade is associated with a consistently inflexed pedicel, self-compatibility in most taxa, and geographical distribution in southern and western portions of the genus range. The other clade, which comprised the remainder of the genus is, however, less supported (up to 71% bootstrap); it is characterized by a deflexed pedicel in the fruiting state (except P. inflata), self-incompatibility, and a northeastern distribution. A nuclear gene, Hf1, seems to be a useful molecular marker for elucidating the phylogeny of the genus Petunia when compared with the nucleotide sequence of trnK intron of chloroplast DNA.

Keywords

Flavonoid-3′,5′-hydroxylase Hf1 trnK Phylogeny Petunia Solanaceae 

Notes

Acknowledgments

We thank Mr Tsuguyoshi Aoki of Buenos Aires, Argentina, Mr Sebastião T. Nagase, Mr Nobuyuki Hiranaka, Mr Tomio Koshizawa, Mr Hideo Ohkubo, and Mr Roberto H. Ohkubo of São Paulo, Brazil, and Mr Masao Udagawa of Montevideo, Uruguay, for help in surveying the natural habitat.

Supplementary material

10265_2006_70_MOESM1_ESM.pdf (54 kb)
Supplement Fig. 1. Strict consensus tree of the 321 most parsimonious trees calculated from combined data of Hf1 exon and trnK intron sequences. Numbers below branches are bootstrap support values (1000 replicates). (PDF kb)

References

  1. Ando T (1996) Distribution of Petunia axillaris (Solanaceae) and its new subspecies in Argentina and Bolivia. Acta Phytotaxon Geobot 47:19–30Google Scholar
  2. Ando T, Hashimoto G (1993) Two new species of Petunia (Solanaceae) from southern Brazil. Bot J Linn Soc 111:265–280CrossRefGoogle Scholar
  3. Ando T, Hashimoto G (1994) A new Brazilian species of Petunia (Solanaceae) from the Serra da Mantiqueira. Brittonia 46:340–343CrossRefGoogle Scholar
  4. Ando T, Hashimoto G (1995) Petunia guarapuavensis (Solanaceae): a new species from Planalto of Paraná and Santa Catarina, Brazil. Brittonia 47:328–334CrossRefGoogle Scholar
  5. Ando T, Hashimoto G (1996) A new Brazilian species of Petunia (Solanaceae) from interior Santa Catarina and Rio Grande do Sul, Brazil. Brittonia 48:217–223CrossRefGoogle Scholar
  6. Ando T, Hashimoto G (1998) Two new species of Petunia (Solanaceae) from southern Rio Grande do Sul, Brazil. Brittonia 50:483–492CrossRefGoogle Scholar
  7. Ando T, Kurata M, Sasaki S, Ueda Y, Hashimoto G, Marchesi E (1995) Comparative morphological studies on infraspecific taxa of Petunia integrifolia (Hook.) Schinz et Thell. (Solanaceae). J Jpn Bot 70:205–217Google Scholar
  8. Ando T, Tsukamoto T, Akiba N, Kokubun H, Watanabe H, Ueda Y, Marchesi E (1998) Differentiation in the degree of self-incompatibility in Petunia axillaris (Solanaceae) occurring in Uruguay. Acta Phytotaxon Geobot 49:37–47Google Scholar
  9. Ando T, Saito N, Tatsuzawa F, Kakefuda T, Yamakage K, Ohtani E, Koshiishi M, Matsusake Y, Kokubun H, Watanabe H, Tsukamoto T, Ueda Y, Hashimoto G, Marchesi E, Asakura K, Hara R, Seki H (1999) Floral anthocyanins in wild taxa of Petunia (Solanaceae). Biochem Syst Ecol 27:623–650CrossRefGoogle Scholar
  10. Ando T, Kokubun H, Watanabe H, Tanaka N, Yukawa T, Hashimoto G, Marchesi E, Suárez E, Basulado I (2005a) Phylogenetic analysis of Petunia sensu Jussieu (Solanaceae) using chloroplast DNA RFLP. Ann Bot 96:289–297.  doi:10.1093/aob/mci177 Google Scholar
  11. Ando T, Ishikawa N, Watanabe H, Kokubun H, Yanagisawa Y, Hashimoto G, Marchesi E, Suárez E (2005b) A morphological study of the Petunia integrifolia complex (Solanaceae). Ann Bot 96:887–900.  doi:10.1093/aob/mci241 Google Scholar
  12. Ando T, Soto S, Suárez E (2005c) New records of Petunia (Solanaceae) for the Argentinean flora. Darwiniana 43:64–68Google Scholar
  13. Cerny TA, Caetano-Anollés G, Trigiano RN, Starman TW (1996) Molecular phylogeny and DNA amplification fingerprinting of Petunia taxa. Theor Appl Genet 92:1009–1016.  doi:10.1007/BF00224042 Google Scholar
  14. Cornu A, Maizonnier D (1983) The genetics of petunia. In: Janick J (ed) Plant breeding reviews, vol 1. AVI Publishing Company, Westport, pp 11–58Google Scholar
  15. Fries RE (1911) Die Arten der Gattung Petunia. Kungl Svenska Vetensk Akad Handl 46:1–72Google Scholar
  16. Griesbach RJ, Beck RM, Stehmann JR (2000) Molecular heterogeneity of the chalcone synthase intron in Petunia. HortScience 35:1347–1349Google Scholar
  17. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum Part I: the herbaria of the world. New York Botanical Garden, BronxGoogle Scholar
  18. Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu C-Y, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower color. Nature 366:276–279PubMedCrossRefGoogle Scholar
  19. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083PubMedCrossRefGoogle Scholar
  20. Johnson LA, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156CrossRefGoogle Scholar
  21. Jussieu AL (1803) Sur le Petunia, genre nouveau de la famille des plantes solanées. Ann Mus Natl d’Histoire Naturelle 2:1347–1349Google Scholar
  22. Kabbaj A, Zeboudj F, Peltier D, Tagmount A, Tersac M, Delieu H, Berbillé A (1995) Variation and phylogeny of the ribosomal DNA unit types and 5S DNA in Petunia Jussieu. Genet Resour Crop Evol 42:311–325CrossRefGoogle Scholar
  23. Kidwell M, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711PubMedCrossRefGoogle Scholar
  24. Kokubun H, Nakano M, Tsukamoto T, Watanabe H, Hashimoto G, Marchesi E, Bullrich L, Basualdo IL, Kao T-h, Ando T (2006) Distribution of self-compatible and self-incompatible populations of Petunia axillaris (Solanaceae) outside Uruguay. J Plant Res 119:419–430.  doi:10.1007/s10265-006-0002-y Google Scholar
  25. Kulcheski FR, Muschner VC, Lorenz-Lemke AP, Stehmann JR, Bonatto SL, Salzano FM, Freitas LB (2006) Molecular phylogenetic analysis of Petunia Juss. (Solanaceae). Genetica 126:3–14.  doi:10.1007/s10709-005-1427-2 Google Scholar
  26. Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128Google Scholar
  27. Matsubara K, Kodama H, Kokubun H, Watanabe H, Ando T (2005) Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene 358:121–126.  doi:10.1016/j.gene.2005.05.031 Google Scholar
  28. Quattrocchio F, Wing J, Woude KVD, Souer E, Vettern ND, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444PubMedCrossRefGoogle Scholar
  29. Rønsted N, Law S, Thornton H, Fay MF, Chase MW (2005) Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol Phylogenet Evol 35:509–527PubMedCrossRefGoogle Scholar
  30. Rowold DJ, Herrera RJ (2000) Alu elements and the human genome. Genetica 108:57–72PubMedCrossRefGoogle Scholar
  31. Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37:121–147PubMedCrossRefGoogle Scholar
  32. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W-S, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166Google Scholar
  33. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  34. Smith LB, Downs RJ (1964) Notes on the Solanaceae of southern Brazil. Phytologia 10:422–453Google Scholar
  35. Smith LB, Downs RJ (1966) Petunia. In: Reitz PR (ed) Flora Illustrada Catarinense. Solanaceas. Herbário “Barbosa Rodrigues”, Itajai, Santa Catarina, Itajai, Brazil, pp 261–291Google Scholar
  36. Stehmann JR (1987) Petunia exserta (Solanaceae): Uma nova espécie do Rio Grande do Sul, Brasil. Napaea Revista Bot 2:19–21Google Scholar
  37. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  39. Tsukamoto T, Ando T, Kokubun H, Watanabe H, Tanaka R, Hashimoto G, Marchesi E, Kao T.-h (1998a) Differentiation in the status of self-incompatibility among all natural taxa of Petunia (Solanaceae). Acta Phytotaxon Geobot 49:115–133Google Scholar
  40. Tsukamoto T, Ando T, Kurata M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (1998b) Resurrection of Petunia occidentalis R. E. Fr. (Solanaceae) inferred from a cross-compatibility study. J Jpn Bot 73:15–21Google Scholar
  41. Ugarkovic D, Plohl M (2002) Variation in satellite DNA profiles—causes and effects. EMBO J 21:5955–5959PubMedCrossRefGoogle Scholar
  42. Wanke S, Samain MS, Vanderschaeve L, Mathieu G, Goetghebeur P, Neinhuis C (2006) Phylogeny of the genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA). Plant Biol (Stuttg) 8:91–102CrossRefGoogle Scholar
  43. Wijsman HJW (1982) On the inter-relationships of certain species of Petunia I. Taxonomic notes on the parental species of Petunia hybrida. Acta Bot Neerl 31:477–490Google Scholar
  44. Wijsman HJW (1990) On the inter-relationships of certain species of Petunia VI. New names for the species of Calibrachoa formerly included into Petunia (Solanaceae). Acta Bot Neerl 39:101–102Google Scholar
  45. Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4:6PubMedCrossRefGoogle Scholar
  46. Zhu S, Fushimi H, Cai SQ, Komatsu K (2003) Phylogenetic relationship in genus Panax: inferred from chloroplast trnK gene and nuclear 18S rRNA gene sequences. Planta Med 69:647–653PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag 2007

Authors and Affiliations

  • Sumei Chen
    • 1
  • Kiyoshi Matsubara
    • 1
  • Takahiro Omori
    • 1
  • Hisashi Kokubun
    • 2
  • Hiroaki Kodama
    • 3
  • Hitoshi Watanabe
    • 2
  • Goro Hashimoto
    • 4
  • Eduardo Marchesi
    • 5
  • Laura Bullrich
    • 6
  • Toshio Ando
    • 3
    Email author
  1. 1.Graduate School of Science and TechnologyChiba UniversityChibaJapan
  2. 2.Center for Environment, Health and Field SciencesChiba UniversityChibaJapan
  3. 3.Faculty of HorticultureChiba UniversityChibaJapan
  4. 4.Centro de Pesquisas de História NaturalSão PauloBrazil
  5. 5.Facutad de AgronomiaUniversidad de la RepúblicaMontevideoUruguay
  6. 6.Instituto de Floricultura, INTALas Cabañas y Los ReserosBuenos AiresArgentina

Personalised recommendations