Advertisement

Journal of Plant Research

, Volume 120, Issue 1, pp 79–98 | Cite as

Microtubule-associated proteins in higher plants

  • Takahiro HamadaEmail author
JPR Symposium

Abstract

A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the γ-tubulin complex (γTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components—actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.

Keywords

Katanin Kinesin MAP200/MOR1 MAP65 Microtubule-associated proteins +TIPs 

Notes

Acknowledgments

I sincerely thank Professor Teruo Shimmen and Professor Seiji Sonobe (University of Hyogo) for critical reading of the manuscript. This work was partially supported by a research fellowship of the Japan Society for the Promotion of Science for young scientists and Grant in-Aid to T.H. for Scientific Research for Plant Graduate Student from Nara Institute of Science and Technology, Supported by The Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. Abdel-Ghany SE, Reddy AS (2000) A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots. DNA Cell Biol 19(9):567–578PubMedCrossRefGoogle Scholar
  2. Akhmanova A, Hoogenraad CC (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17(1):47–54PubMedCrossRefGoogle Scholar
  3. Al-Bassam J, van Breugel M, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172(7):1009–1022PubMedCrossRefGoogle Scholar
  4. Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16(4):1584–1592PubMedCrossRefGoogle Scholar
  5. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808PubMedCrossRefGoogle Scholar
  6. Ashby J, Boutant E, Seemanpillai M, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80(17):8329–8344PubMedCrossRefGoogle Scholar
  7. Askham JM, Vaughan KT, Goodson HV, Morrison EE (2002) Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell 13(10):3627–3624PubMedCrossRefGoogle Scholar
  8. Baas PW, Qiang L (2005) Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol 15(4):183–187PubMedCrossRefGoogle Scholar
  9. Beachy RN, Heinlein M (2000) Role of P30 in replication and spread of TMV. Traffic 1(7):540–544PubMedCrossRefGoogle Scholar
  10. Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84(4):623–631PubMedCrossRefGoogle Scholar
  11. Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE (1998) The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci USA 95(18):10596–10601PubMedCrossRefGoogle Scholar
  12. Bichet A, Desnos T, Turner S, Grandjean O, Hofte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25(2):137–148PubMedCrossRefGoogle Scholar
  13. Bisgrove SR, Hable WE, Kropf DL (2004) +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol 136(4):3855–3863PubMedCrossRefGoogle Scholar
  14. Bouquin T, Mattsson O, Naested H, Foster R, Mundy J (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116(Pt 5):791–801PubMedCrossRefGoogle Scholar
  15. Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon MO, Heinlein M (2000) Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 74(23):11339–11346PubMedCrossRefGoogle Scholar
  16. Brière C, Bordel AC, Barthou H, Jauneau A, Steinmetz A, Alibert G, Petitprez M (2003) Is the LIM-domain protein HaWLIM1 associated with cortical microtubules in sunflower protoplasts? Plant Cell Physiol 44(10):1055–1063PubMedCrossRefGoogle Scholar
  17. Brittle AL, Ohkura H (2005) Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J 24(7):1387–1396PubMedCrossRefGoogle Scholar
  18. Burk DH, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14(9):2145–2160PubMedCrossRefGoogle Scholar
  19. Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13(4):807–827PubMedCrossRefGoogle Scholar
  20. Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schaffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14(16):1515–1521PubMedCrossRefGoogle Scholar
  21. Cai G, Ovidi E, Romagnoli S, Vantard M, Cresti M, Tiezzi A (2005) Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco. Plant Cell Physiol 46(4):563–578PubMedCrossRefGoogle Scholar
  22. Cai G, Romagnoli S, Moscatelli A, Ovidi E, Gambellini G, Tiezzi A, Cresti M (2000) Identification and characterization of a novel microtubule-based motor associated with membranous organelles in tobacco pollen tubes. Plant Cell 12(9):1719–1736PubMedCrossRefGoogle Scholar
  23. Cassimeris L, Gard D, Tran PT, Erickson HP (2001) XMAP215 is a long thin molecule that does not increase microtubule stiffness. J Cell Sci 114(Pt 16):3025–3033PubMedGoogle Scholar
  24. Cassimeris L (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14(1):18–24PubMedCrossRefGoogle Scholar
  25. Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17(6):1737–1748PubMedCrossRefGoogle Scholar
  26. Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5(11):967–971PubMedCrossRefGoogle Scholar
  27. Chan J, Jensen CC, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96: 14931–14936PubMedCrossRefGoogle Scholar
  28. Chang HY, Smertenko AP, Igarashi H, Dixon DP, Hussey PJ (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. J Cell Sci 118(Pt 14):3195–3201PubMedCrossRefGoogle Scholar
  29. Charrasse S, Schroeder M, Gauthier-Rouviere C, Ango F, Cassimeris L, Gard DL, Larroque C (1998) The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J Cell Sci 111(Pt 10):1371–1383PubMedGoogle Scholar
  30. Chen C, Marcus A, Li W, Hu Y, Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129(10):2401–2409PubMedGoogle Scholar
  31. Chen XP, Yin H, Huffaker TC (1998) The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly. J Cell Biol 141(5):1169–1179PubMedCrossRefGoogle Scholar
  32. Chuong SD, Good AG, Taylor GJ, Freeman MC, Moorhead GB, Muench DG (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3(10):970–983PubMedCrossRefGoogle Scholar
  33. Chuong SD, Mullen RT, Muench DG (2002) Identification of a rice RNA- and microtubule-binding protein as the multifunctional protein, a peroxisomal enzyme involved in the beta-oxidation of fatty acids. J Biol Chem 277(4):2419–2429PubMedCrossRefGoogle Scholar
  34. Chuong SD, Park NI, Freeman MC, Mullen RT, Muench DG (2005) The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells. BMC Cell Biol 6:40PubMedCrossRefGoogle Scholar
  35. Cleary AL, Smith LG (1998) The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10(11):1875–1888PubMedCrossRefGoogle Scholar
  36. Collings DA, Asada T, Allen NS, Shibaoka H (1998) Plasma membrane-associated actin in bright yellow 2 tobacco cells. Evidence for interaction with microtubules. Plant Physiol 118(3):917–928PubMedCrossRefGoogle Scholar
  37. Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138(5):1041–1053PubMedCrossRefGoogle Scholar
  38. Cullen CF, Deak P, Glover DM, Ohkura H (1999) mini spindles: a gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol 146(5):1005–1018PubMedCrossRefGoogle Scholar
  39. Cullen CF, Ohkura H (2001) Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol 3(7):637–642PubMedCrossRefGoogle Scholar
  40. Dagenbach EM, Endow SA (2004) A new kinesin tree. J Cell Sci 117(Pt 1):3–7PubMedCrossRefGoogle Scholar
  41. Davies E, Comer EC, Lionberger JM, Stankovic B, Abe S (1993) Cytoskeleton-bound polysomes in plants. III. Polysome-cytoskeleton-membrane interactions in corn endosperm. Cell Biol Int 17:331–340CrossRefGoogle Scholar
  42. Davies E, Fillingham BD, Oto Y, Abe S (1991) Evidence for the existence of cytoskeleton-bound polysomes in plants. Cell Biol Int Rep 15:975–981CrossRefGoogle Scholar
  43. Day IS, Miller C, Golovkin M, Reddy AS (2000) Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J Biol Chem 275(18):13737–13745PubMedCrossRefGoogle Scholar
  44. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117PubMedCrossRefGoogle Scholar
  45. DeZwaan TM, Ellingson E, Pellman D, Roof DM (1997) Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol 138(5):1023–1040PubMedCrossRefGoogle Scholar
  46. Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15(11):2666–2679PubMedCrossRefGoogle Scholar
  47. Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17(3):1298–1305PubMedCrossRefGoogle Scholar
  48. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3(10):1141–1154PubMedGoogle Scholar
  49. Dryková D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes. Plant Cell 15(2):465–480PubMedCrossRefGoogle Scholar
  50. Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha. Plant Cell 6(6):893–905PubMedCrossRefGoogle Scholar
  51. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143(3):777–794PubMedCrossRefGoogle Scholar
  52. Eleftheriou EP, Baskin TI, Hepler PK (2005) Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant. Plant Cell Physiol 46(4):671–675PubMedCrossRefGoogle Scholar
  53. Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115(Pt 11):2423–2431PubMedGoogle Scholar
  54. Falconer MM, Seagull RW (1985) Immunofluorescent and calcofluor white staining of developing tracheary elements in Zinnia elegans L. suspension cultures. Protoplasma 125:190–198CrossRefGoogle Scholar
  55. Faulkner NE, Dujardin DL, Tai CY, Vaughan KT, O’Connell CB, Wang Y, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2(11):784–791PubMedCrossRefGoogle Scholar
  56. Fukuda H, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev Growth Differ 31:9–16CrossRefGoogle Scholar
  57. Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana. Development 127(20):4443–4453PubMedGoogle Scholar
  58. Garcia MA, Koonrugsa N, Toda T (2002a) Spindle-kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. EMBO J 21(22):6015–6024CrossRefGoogle Scholar
  59. Garcia MA, Koonrugsa N, Toda T (2002b) Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12(8):610–621CrossRefGoogle Scholar
  60. Garcia MA, Vardy L, Koonrugsa N, Toda T (2001) Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20(13):3389–3401PubMedCrossRefGoogle Scholar
  61. Gard DL, Becker BE, Josh Romney S (2004) MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol 239:179–272PubMedCrossRefGoogle Scholar
  62. Gard DL, Kirschner MW (1987) A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105(5):2203–2215PubMedCrossRefGoogle Scholar
  63. Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44(7):687–696PubMedCrossRefGoogle Scholar
  64. Gardiner J, Marc J (2003) Putative microtubule-associated proteins from the Arabidopsis genome. Protoplasma 222(1–2):61–74PubMedCrossRefGoogle Scholar
  65. Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13(9):2143–2145PubMedCrossRefGoogle Scholar
  66. Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW (2000) The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci USA 97(26):14352–14357PubMedCrossRefGoogle Scholar
  67. Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156(3):437–451PubMedCrossRefGoogle Scholar
  68. Gräf R, Daunderer C, Schliwa M (2000) Dictyostelium DdCP224 is a microtubule-associated protein and a permanent centrosomal resident involved in centrosome duplication. J Cell Sci 113(Pt 10):1747–1758PubMedGoogle Scholar
  69. Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, Barr FA (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172(3):363–372PubMedCrossRefGoogle Scholar
  70. Guo D, Spetz C, Saarma M, Valkonen JP (2003) Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro. Mol Plant Microbe Interact 16(5):405–410PubMedGoogle Scholar
  71. Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45(9):1233–1242PubMedCrossRefGoogle Scholar
  72. Hardham AR, Gunning BE (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77(1):14–34PubMedCrossRefGoogle Scholar
  73. Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93(2):277–287PubMedCrossRefGoogle Scholar
  74. Hartman JJ, Vale RD (1999) Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science 286(5440):782–785PubMedCrossRefGoogle Scholar
  75. Hasezawa S, Nagata T (1991) Dynamic organization of plant microtubules at the three distinct transition points during the cell cycle progression of synchronized tobacco BY-2 cells. Bot Acta 104:206–211Google Scholar
  76. Hepler PK, Jackson WT (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J Cell Biol 38: 437–446PubMedCrossRefGoogle Scholar
  77. Hirase A, Hamada T, Itoh TJ, Shimmen T, Sonobe S (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol 47(7):1004–1009PubMedCrossRefGoogle Scholar
  78. Hirokawa N (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci 26(27):7139–7142PubMedCrossRefGoogle Scholar
  79. Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50(6):915–924PubMedCrossRefGoogle Scholar
  80. Ichihara K, Kitazawa H, Iguchi Y, Hotani H, Itoh TJ (2001) Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2). J Mol Biol 312(1):107–118PubMedCrossRefGoogle Scholar
  81. Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41(8):920–931PubMedCrossRefGoogle Scholar
  82. Ishida T, Thitamadee S, Hashimoto T (2007) Twisted growth and organization of cortical microtubules. J Plant Res 120 (in press)Google Scholar
  83. Jansen RP (1999) RNA-cytoskeletal associations. FASEB J 13(3):455–466PubMedGoogle Scholar
  84. Jiang C, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105(Pt 4):891–901Google Scholar
  85. Jiang CJ, Sonobe S, Shibaoka H (1992) Assembly of microtubules in a cytoplasmic extract of tobacco BY-2 miniprotoplasts in the absence of microtubule-stabilizing agents. Plant Cell Physiol 33:497–501Google Scholar
  86. Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM, Hunter T, Fukunaga R (1998) PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell 2(6):877–885PubMedCrossRefGoogle Scholar
  87. Kakimoto T, Shibaoka H (1988a) Cytoskeletal ultrastructure of phragmoplast-nuclei complex isolated from cultured tobacco cells. Protoplasma (Suppl) 2:95–103Google Scholar
  88. Kakimoto T, Shibaoka H. (1988b) Cytoskeletal ultrastructure of phragmoplast–nuclei complexes isolated from cultured tobacco cells. Protoplasma (Suppl) 2:95–103Google Scholar
  89. Kanai Y, Dohmae N, Hirokawa N. (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43(4):513–525PubMedCrossRefGoogle Scholar
  90. Kauss H, Jeblick W (1996) Influence of salicylic acid on the induction of competence for H2O2 elicitation (comparison of ergosterol with other elicitors). Plant Physiol 111(3):755–763PubMedGoogle Scholar
  91. Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140(1):102–114PubMedCrossRefGoogle Scholar
  92. Kerssemakers JW, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442(7103):709–712PubMedCrossRefGoogle Scholar
  93. Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A, Lee M, Raff JW, Hyman AA (2005) Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170(7):1047–1055PubMedCrossRefGoogle Scholar
  94. Kosco KA, Pearson CG, Maddox PS, Wang PJ, Adams IR, Salmon ED, Bloom K, Huffaker TC (2001) Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol Biol Cell. 12(9):2870–2880PubMedGoogle Scholar
  95. Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132(4):1870–1883PubMedCrossRefGoogle Scholar
  96. Kumagai F, Hasezawa S, Takahashi Y, Nagata T (1995) The involvement of protein synthesis elongation factor 1alpha in the organization of microtubules on the perinuclear region during the cell cycle transition from M phase to G1 phase in tobacco BY-2 cells. Bot Acta 108:467–473Google Scholar
  97. Kumagai F, Nagata T, Yahara N, Moriyama Y, Horio T, Naoi K, Hashimoto T, Murata T, Hasezawa S (2003) Gamma-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol 82(1):43–51PubMedCrossRefGoogle Scholar
  98. Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42(7):723–732PubMedCrossRefGoogle Scholar
  99. Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23(16):3237–3248PubMedCrossRefGoogle Scholar
  100. Lancelle SA, Callaham DA, Hepler PK (1986a) A method for rapid freeze fixation of plant-cells. Plotoplasma 131(2):153–165CrossRefGoogle Scholar
  101. Lancelle SA, Callaham DA, Hepler PK (1986b) A method for rapid freeze fixation of plant cells. Protoplasma 131:153–165CrossRefGoogle Scholar
  102. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22PubMedCrossRefGoogle Scholar
  103. Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250CrossRefGoogle Scholar
  104. Lee MJ, Gergely F, Jeffers K, Peak-Chew SY, Raff JW (2001) Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol 3(7):643–649PubMedCrossRefGoogle Scholar
  105. Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136(4):3877–3883PubMedCrossRefGoogle Scholar
  106. Ligon LA, Shelly SS, Tokito M, Holzbaur EL (2003) The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol Biol Cell 14(4):1405–1417PubMedCrossRefGoogle Scholar
  107. Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8(1):119–132PubMedCrossRefGoogle Scholar
  108. Liu B, Marc J, Joshi HC, Palevitz BA (1993) A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104(Pt 4):1217–1228PubMedGoogle Scholar
  109. Loiodice I, Staub J, Setty TG, Nguyen NP, Paoletti A, Tran PT (2005) Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol Biol Cell 16(4):1756–1768PubMedCrossRefGoogle Scholar
  110. Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117(Pt 7):1117–1128PubMedCrossRefGoogle Scholar
  111. Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16(2):811–823PubMedCrossRefGoogle Scholar
  112. Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7(1):72–81PubMedCrossRefGoogle Scholar
  113. Mao G, Buschmann H, Doonan JH, Lloyd CW (2006) The role of MAP65–1 in microtubule bundling during Zinnia tracheary element formation. J Cell Sci 119(Pt 4):753–758PubMedCrossRefGoogle Scholar
  114. Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005a) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43(4):469–478CrossRefGoogle Scholar
  115. Mao T, Jin L, Li H, Liu B, Yuan M (2005b) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138(2):654–662CrossRefGoogle Scholar
  116. Marc J, Sharkey DE, Durso NA, Zhang M, Cyr RJ (1996) Isolation of a 90-kD microtubule-associated protein from tobacco membranes. Plant Cell 8(11):2127–2138PubMedCrossRefGoogle Scholar
  117. Marcus AI, Ambrose JC, Blickley L, Hancock WO, Cyr RJ (2002) Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement. Cell Motil Cytoskeleton 52(3):144–150PubMedCrossRefGoogle Scholar
  118. Mas P, Beachy RN (2000) Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc Natl Acad Sci USA 97(22):12345–12349PubMedCrossRefGoogle Scholar
  119. Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol 13(22):1991–1997PubMedCrossRefGoogle Scholar
  120. Matthews LR, Carter P, Thierry-Mieg D, Kemphues K (1998) ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J Cell Biol 141(5):1159–1168PubMedCrossRefGoogle Scholar
  121. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75(3):419–429PubMedCrossRefGoogle Scholar
  122. McNally KP, Bazirgan OA, McNally FJ (2000) Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. J Cell Sci 113(Pt 9):1623–1633PubMedGoogle Scholar
  123. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476PubMedCrossRefGoogle Scholar
  124. Miles GP, Samuel MA, Jones AM, Ellis BE (2004) Mastoparan rapidly activates plant MAP kinase signaling independent of heterotrimeric G proteins. Plant Physiol 134(4):1332–1336PubMedCrossRefGoogle Scholar
  125. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10(14):865–868PubMedCrossRefGoogle Scholar
  126. Mineyuki Y (2007) Plant microtubule study: past and present. J Plant Res 120 (in press)Google Scholar
  127. Mitsui H, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H (1993) Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol Gen Genet 238(3):362–368PubMedCrossRefGoogle Scholar
  128. Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157(7):1175–1186PubMedCrossRefGoogle Scholar
  129. Moore RC, Cyr RJ (2000) Association between elongation factor-1alpha and microtubules in vivo is domain dependent and conditional. Cell Motil Cytoskeleton 45(4):279–292PubMedCrossRefGoogle Scholar
  130. Moore RC, Durso NA, Cyr RJ (1998) Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil Cytoskeleton 41(2):168–180PubMedCrossRefGoogle Scholar
  131. Morrison EE, Wardleworth BN, Askham JM, Markham AF, Meredith DM (1998) EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17(26):3471–3477PubMedCrossRefGoogle Scholar
  132. Muench DG, Chuong SD, Franceschi VR, Okita TW (2000) Developing prolamine protein bodies are associated with the cortical cytoskeleton in rice endosperm cells. Planta 211(2):227–238PubMedCrossRefGoogle Scholar
  133. Muench DG, Wu Y, Coughlan SJ, Okita TW (1998) Evidence for a cytoskeleton-associated binding site involved in prolamine mRNA localization to the protein bodies in rice endosperm tissue. Plant Physiol 116(2):559–569PubMedCrossRefGoogle Scholar
  134. Muller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16(9):888–894PubMedCrossRefGoogle Scholar
  135. Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65–3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14(5):412–417PubMedCrossRefGoogle Scholar
  136. Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plants. J Plant Res 120 (in press)Google Scholar
  137. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7(10):961–968PubMedCrossRefGoogle Scholar
  138. Nabeshima K, Kurooka H, Takeuchi M, Kinoshita K, Nakaseko Y, Yanagida M (1995) p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev 9(13):1572–1585PubMedGoogle Scholar
  139. Nabeshima K, Nakagawa T, Straight AF, Murray A, Chikashige Y, Yamashita YM, Hiraoka Y, Yanagida M (1998) Dynamics of centromeres during metaphase–anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase polar spindle. Mol Biol Cell 9(11):3211–3225PubMedGoogle Scholar
  140. Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16(5):1178–1190PubMedCrossRefGoogle Scholar
  141. Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47(4):513–522PubMedCrossRefGoogle Scholar
  142. Nakaseko Y, Nabeshima K, Kinoshita K, Yanagida M (1996) Dissection of fission yeast microtubule associating protein p93Dis1: regions implicated in regulated localization and microtubule interaction. Genes Cells 1(7):633–644PubMedCrossRefGoogle Scholar
  143. Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15(3):352–363PubMedCrossRefGoogle Scholar
  144. Nogales E (2001) Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 30:397–420PubMedCrossRefGoogle Scholar
  145. Oakley CE, Oakley BR (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338(6217):662–664PubMedCrossRefGoogle Scholar
  146. Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137(3):1027–1036PubMedCrossRefGoogle Scholar
  147. Okita TW, Choi SB (2002) mRNA localization in plants: targeting to the cell’s cortical region and beyond. Curr Opin Plant Biol 5(6):553–559PubMedCrossRefGoogle Scholar
  148. Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125(19):3789–3799PubMedGoogle Scholar
  149. Pellman D, Bagget M, Tu YH, Fink GR, Tu H (1995) Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J Cell Biol 130(6):1373–1385PubMedCrossRefGoogle Scholar
  150. Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS (1997) Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol 136(5):1081–1090PubMedCrossRefGoogle Scholar
  151. Permana S, Hisanaga S, Nagatomo Y, Iida J, Hotani H, Itoh TJ (2005) Truncation of the projection domain of MAP4 (microtubule-associated protein 4) leads to attenuation of microtubule dynamic instability. Cell Struct Funct 29(5–6):147–157PubMedCrossRefGoogle Scholar
  152. Pierre P, Pepperkok R, Kreis TE (1994) Molecular characterization of two functional domains of CLIP-170 in vivo. J Cell Sci 107(Pt 7):1909–1920PubMedGoogle Scholar
  153. Pierre P, Scheel J, Rickard JE, Kreis TE (1992) CLIP-170 links endocytic vesicles to microtubules. Cell 70: 887–900PubMedCrossRefGoogle Scholar
  154. Popov AV, Severin F, Karsenti E (2002) XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr Biol 12(15):1326–1330PubMedCrossRefGoogle Scholar
  155. Preisig-Müller R, Guhnemann-Schafer K, Kindl H (1994) Domains of the tetrafunctional protein acting in glyoxysomal fatty acid beta-oxidation. Demonstration of epimerase and isomerase activities on a peptide lacking hydratase activity. J Biol Chem 269(32):20475–20481PubMedGoogle Scholar
  156. Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132(1):154–160PubMedCrossRefGoogle Scholar
  157. Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136: 3945–3955PubMedCrossRefGoogle Scholar
  158. Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2(1):2PubMedCrossRefGoogle Scholar
  159. Reddy AS, Narasimhulu SB, Safadi F, Golovkin M (1996a) A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant J 10(1):9–21CrossRefGoogle Scholar
  160. Reddy AS, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996b) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271(12):7052–7060CrossRefGoogle Scholar
  161. Reddy VS, Safadi F, Zielinski RE, Reddy AS (1999) Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. J Biol Chem 274(44):31727–31733PubMedCrossRefGoogle Scholar
  162. Rehberg M, Gräf R (2002) Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell 13(7):2301–2310PubMedCrossRefGoogle Scholar
  163. Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18PubMedCrossRefGoogle Scholar
  164. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609PubMedCrossRefGoogle Scholar
  165. Rogers SL, Rogers GC, Sharp DJ, Vale RD (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158(5):873–884PubMedCrossRefGoogle Scholar
  166. Sami-Subbu R, Choi SB, Wu Y, Wang C, Okita TW (2001) Identification of a cytoskeleton-associated 120 kDa RNA-binding protein in developing rice seeds. Plant Mol Biol 46(1):79–88PubMedCrossRefGoogle Scholar
  167. Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65–1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20(8):1004–1014PubMedCrossRefGoogle Scholar
  168. Sato M, Vardy L, Angel Garcia M, Koonrugsa N, Toda T (2004) Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol Biol Cell 15(4):1609–1622PubMedCrossRefGoogle Scholar
  169. Schuyler SC, Liu JY, Pellman D (2003) The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160(4):517–528PubMedCrossRefGoogle Scholar
  170. Schwab B, Mathur J, Saedler R, Schwarz H, Frey B, Scheidegger C, Hulskamp M (2003) Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol Genet Genomics 269(3):350–360PubMedCrossRefGoogle Scholar
  171. Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR (2004) The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell. 16(6):1506–1520PubMedCrossRefGoogle Scholar
  172. Severin F, Habermann B, Huffaker T, Hyman T (2001) Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 153(2):435–442PubMedCrossRefGoogle Scholar
  173. Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300(5626):1715–1718PubMedCrossRefGoogle Scholar
  174. Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45:527–544Google Scholar
  175. Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E (1994) Microtubule severing by elongation factor 1 alpha. Science 266(5183):282–285PubMedCrossRefGoogle Scholar
  176. Shirasu-Hiza M, Coughlin P, Mitchison T (2003) Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification. J Cell Biol 161(2):349–358PubMedCrossRefGoogle Scholar
  177. Shoji T, Narita NN, Hayashi K, Asada J, Hamada T, Sonobe S, Nakajima K, Hashimoto T (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136(4):3933–3944PubMedCrossRefGoogle Scholar
  178. Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65–1 interaction with microtubules through the cell cycle. J Cell Sci 119(Pt 15):3227–3237PubMedCrossRefGoogle Scholar
  179. Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16(8):2035–2047PubMedCrossRefGoogle Scholar
  180. Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2(10):750–753PubMedCrossRefGoogle Scholar
  181. Smirnova EA, Reddy AS, Bowser J, Bajer AS (1998) Minus end-directed kinesin-like motor protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskeleton 41(3):271–280PubMedCrossRefGoogle Scholar
  182. Smith LG, Gerttula SM, Han S, Levy J (2001) Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152(1):231–236PubMedCrossRefGoogle Scholar
  183. Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122(2):481–489PubMedGoogle Scholar
  184. Sonobe S, Yamamoto S, Motomura M, Shimmen T (2001) Isolation of cortical MTs from tobacco BY-2 cells. Plant Cell Physiol 42(2):162–169PubMedCrossRefGoogle Scholar
  185. Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17(8):1055–1067PubMedCrossRefGoogle Scholar
  186. Spittle C, Charrasse S, Larroque C, Cassimeris L (2000) The interaction of TOGp with microtubules and tubulin. J Biol Chem 275(27):20748–20753PubMedCrossRefGoogle Scholar
  187. St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6(5):363–375PubMedCrossRefGoogle Scholar
  188. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156(6):1051PubMedCrossRefGoogle Scholar
  189. Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4(6):1017–1027PubMedCrossRefGoogle Scholar
  190. Stoppin-Mellet V, Gaillard J, Vantard M (2002) Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J 365(Pt 2):337–342PubMedGoogle Scholar
  191. Suprenant KA, Tempero LB, Hammer LB (1989) Association of ribosomes with in vitro assembled microtubules. Cell Motil Cytoskeleton 14:401–415PubMedCrossRefGoogle Scholar
  192. Takahashi K, Isobe M, Muto S (1998) Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1401(3):339–346PubMedCrossRefGoogle Scholar
  193. Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9(12):1199–1211PubMedCrossRefGoogle Scholar
  194. Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, Antony C Tanaka TU (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434(7036):987–994PubMedCrossRefGoogle Scholar
  195. Tirnauer JS, Grego S, Salmon ED, Mitchison TJ (2002) EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol Biol Cell 13(10):3614–3426PubMedCrossRefGoogle Scholar
  196. Tirnauer JS, O’Toole E, Berrueta L, Bierer BE, Pellman D (1999) Yeast Bim1p promotes the G1-specific dynamics of microtubules. J Cell Biol 145(5):993–1007PubMedCrossRefGoogle Scholar
  197. Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Microtubules regulates the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199:83–92CrossRefGoogle Scholar
  198. Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, KarsentiE, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2(1):13–19PubMedCrossRefGoogle Scholar
  199. Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(Pt 14):2355–2367PubMedGoogle Scholar
  200. Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4(9):711–714PubMedCrossRefGoogle Scholar
  201. van Breugel M, Drechsel D, Hyman A (2003) Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol 161(2):359–369PubMedCrossRefGoogle Scholar
  202. Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D (2004a) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40(3):386–398CrossRefGoogle Scholar
  203. Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004b) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136(4):3956–3967CrossRefGoogle Scholar
  204. Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11(4):167–175PubMedCrossRefGoogle Scholar
  205. Vasquez RJ, Gard DL, Cassimeris L (1994) XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J Cell Biol 127(4):985–993PubMedCrossRefGoogle Scholar
  206. Vaughan KT (2004) Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol 14(9):491–496PubMedCrossRefGoogle Scholar
  207. Vaughan KT (2005) TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 171(2):197–200PubMedCrossRefGoogle Scholar
  208. Verbrugghe KJ, White JG (2004) SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr Biol 14(19):1755–1760PubMedCrossRefGoogle Scholar
  209. Verni F, Somma MP, Gunsalus KC, Bonaccorsi S, Belloni G, Goldberg ML, Gatti M (2004) Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis. Curr Biol 14(17):1569–1575PubMedCrossRefGoogle Scholar
  210. Vos JW, Safadi F, Reddy AS, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12(6):979–990PubMedCrossRefGoogle Scholar
  211. Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84(1):37–47PubMedCrossRefGoogle Scholar
  212. Wang W, Takezawa D, Narasimhulu SB, Reddy ASN, Poovaiah BW (1996) A novel kinesin-like protein with a calmodulin-binding domain. Plant Mol Biol 31:87–100PubMedCrossRefGoogle Scholar
  213. Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5(5):408–414PubMedCrossRefGoogle Scholar
  214. Wang PJ, Huffaker TC (1997) Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J Cell Biol 139(5):1271–1280PubMedCrossRefGoogle Scholar
  215. Wordeman L (2005) Microtubule-depolymerizing kinesins. Curr Opin Cell Biol 17(1):82–88PubMedCrossRefGoogle Scholar
  216. Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7(6):651–660PubMedCrossRefGoogle Scholar
  217. Waterman-Storer CM, Gregory J, Parsons SF, Salmon ED (1995) Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts. J Cell Biol 130(5):1161–1169PubMedCrossRefGoogle Scholar
  218. Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3-a katanin-p60 protein. Development 129(1):123–131PubMedGoogle Scholar
  219. West RR, Malmstrom T, McIntosh JR (2002) Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. J Cell Sci 115(Pt 5):931–940PubMedGoogle Scholar
  220. Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411(6837):610–613PubMedCrossRefGoogle Scholar
  221. Wicker-Planquart C, Stoppin-Mellet V, Blanchoin L, Vantard M (2004) Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules. Plant J 39(1):126–134PubMedCrossRefGoogle Scholar
  222. Wiese C, Zheng Y (2006) Microtubule nucleation: γ-tubulin and beyond. J Cell Sci 119(Pt 20):4143–4153PubMedCrossRefGoogle Scholar
  223. Xia G, Ramachandran S, Hong Y, Chan YS, Simanis V, Chua NH (1996) Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe. Plant J 10(4):761–769PubMedCrossRefGoogle Scholar
  224. Yamashita A, Sato M, Fujita A, Yamamoto M, Toda T (2005) The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol Biol Cell 16(3):1378–1395PubMedCrossRefGoogle Scholar
  225. Yasuhara H, Muraoka M, Shogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43(6):595–603PubMedCrossRefGoogle Scholar
  226. Zheng L, Shan J, Krishnamoorthi R, Wang X (2002) Activation of plant phospholipase Dbeta by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action. Biochemistry 41(14):4546–4553PubMedCrossRefGoogle Scholar
  227. Zheng L, Schwartz C, Wee L, Oliferenko S (2006) The fission yeast transforming acidic coiled coil-related protein Mia1p/Alp7p is required for formation and maintenance of persistent microtubule-organizing centers at the nuclear envelope. Mol Biol Cell 17(5):2212–2222PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2007

Authors and Affiliations

  1. 1.Department of Life Science, Graduate School of Life ScienceUniversity of HyogoHyogoJapan

Personalised recommendations