Journal of Plant Research

, Volume 120, Issue 1, pp 61–70

Twisted growth and organization of cortical microtubules

  • Takashi Ishida
  • Siripong Thitamadee
  • Takashi Hashimoto
JPR Symposium


In plants, directional cell expansion greatly contributes to the final shape of mature cells, and thus to organ architecture. A particularly interesting mode of cell expansion is helical growth in which the growth axis is continuously tilted either to the right or to the left as the cell grows. Fixed handedness of helical growth raises fundamental questions on the possible origin of left–right asymmetry. Twisting mutants of Arabidopsis thaliana offer unique opportunities to study the cellular basis of helical growth. Most of the twisting mutants with fixed handedness have been shown to have defects in microtubule functions, whereas mutants that twist in non-fixed directions appear to be defective in auxin response or transport. Good correlations have been found between the tilted growth direction and alignment of cortical microtubule arrays in twisting mutants with compromised microtubule functions. The present challenge is to understand how particular array patterns are organized during progression of the interphase in rapidly expanding cells. Molecular and cell biological studies on twisting mutants will lead to better understanding on how wild-type plant cells utilize the microtubule cytoskeleton to initiate and rigorously maintain straight growth.


Helical growth Microtubules Cell elongation Arabidopsis Mutants 


  1. Abe T, Hashimoto T (2005) Altered microtubule dynamics by expression of modified alpha-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant J 43(2):191–204PubMedCrossRefGoogle Scholar
  2. Abe T, Thitamadee S, Hashimoto T (2004) Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol 45:211–220PubMedCrossRefGoogle Scholar
  3. Al-Bassam J, van Breugel M, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172:1009–1022PubMedCrossRefGoogle Scholar
  4. Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin and taxol. Plant Cell Physiol 35:935–942PubMedGoogle Scholar
  5. Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schäffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14:1515–1521PubMedCrossRefGoogle Scholar
  6. Carland FM, McHale NA (1996) LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122:1811–1819PubMedGoogle Scholar
  7. Chalfie M, Thomson JN (1982) Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J Cell Biol 93:12–23CrossRefGoogle Scholar
  8. Chrétien D, Wade RH (1991) New data on the microtubule surface lattice. Biol Cell 71:161–174PubMedCrossRefGoogle Scholar
  9. Cnops G, Wang X, Linstead P, Van Montague M, Van Lijsebettens M, Dolan L (2000) TORNADO1 and TORNADO2 are required for the specification of radial and circumferential pattern in the Arabidopsis root. Development 127:3385–3394PubMedGoogle Scholar
  10. Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K, Azmi A, Prinsen E, Van Lijsebettens M (2006) The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell 18:852–866PubMedCrossRefGoogle Scholar
  11. Dixit R, Cyr R (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16:3274–3284PubMedCrossRefGoogle Scholar
  12. Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17:1298–1305PubMedCrossRefGoogle Scholar
  13. Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1989) Computer-aided 3-D reconstruction of interphase microtubules in epidermal cells of Datura stramonium reveals principles of array assembly. Development 106:531–541Google Scholar
  14. Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127:4443–4453PubMedGoogle Scholar
  15. Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kálmán Z, Koncz C, Dudler R, Blankeslee JJ, Murphy AS, Martinoia E, Schulz B (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249PubMedCrossRefGoogle Scholar
  16. Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kokukisaoglu UH, Schulz B, Martinoia E (2004) Arabidopsis Immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15:3393–3405PubMedCrossRefGoogle Scholar
  17. Green PB (1954) The spiral growth pattern of the cell wall in Nitella axillaris. Am J Bot 41:403–409CrossRefGoogle Scholar
  18. Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242PubMedCrossRefGoogle Scholar
  19. Hamada T, Shinmen T, Sonobe S (2006) Microtubule-associated proteins in plants. J Plant Res (in press)Google Scholar
  20. Hasezawa S, Hogetsu T, Syono K (1988) Rearrangement of cortical microtubules in elongating cells derived from tobacco protoplasts. J Plant Physiol 133:46–51Google Scholar
  21. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left–right asymmetry. Cell 125:33–45PubMedCrossRefGoogle Scholar
  22. Hozumi S, Maeda R, Taniguchi K, Sanai M, Shirakabe S, Sasamura T, Spéder P, Noselli S, Aigaki T, Murakami R, Matsuno K (2006) An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 440:798–802PubMedCrossRefGoogle Scholar
  23. Jacobs J, Roe JL (2005) SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development. Plant 222:652–666CrossRefGoogle Scholar
  24. Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld J (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276PubMedCrossRefGoogle Scholar
  25. Konishi M, Sugiyama M (2003) Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development 130:5637–5647PubMedCrossRefGoogle Scholar
  26. Liang BM, Dennings AM, Sharp RE, Baskin TI (1996) Consistent handedness of microtubule helical arrays in maize and Arabidopsis primary roots. Protoplasma 190:8–15CrossRefGoogle Scholar
  27. Lloyd CW (1983) Helical microtubular arrays in onion root hairs. Nature 305:311–313PubMedCrossRefGoogle Scholar
  28. Mineyuki Y (2006) Plant microtubule study: past and present. J Plant Res (in press)Google Scholar
  29. Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788PubMedCrossRefGoogle Scholar
  30. Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190PubMedCrossRefGoogle Scholar
  31. Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47:513–522PubMedCrossRefGoogle Scholar
  32. Nakamura M, Kaoi K, Shoji T, Hashimoto T (2004) Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol 45:1330–1334PubMedCrossRefGoogle Scholar
  33. Naoi K, Hashimoto T (2004) A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16(7):1841–1853PubMedCrossRefGoogle Scholar
  34. Olmos E, Reiss B, Dekker K (2003) The ekeko mutant demonstrates a role for tetraspanin-like protein in plant development. Biochem Biophys Res Commun 310:1054–1061PubMedCrossRefGoogle Scholar
  35. Pérez-Pérez JM, Ponce MR, Micol JL (2004) The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 134:101–107PubMedCrossRefGoogle Scholar
  36. Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phospatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14:1635–1648PubMedCrossRefGoogle Scholar
  37. Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible W, Somerville CR (2004) The Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16:1506–1520PubMedCrossRefGoogle Scholar
  38. Shaevitz JW, Lee JY, Fletcher DA (2005) Spiroplasma swim by a processive change in body helicity. Cell 122:941–945PubMedCrossRefGoogle Scholar
  39. Shoji T, Narita NN, Hayashi K, Asada J, Hamada T, Sonobe S, Nakajima K, Hashimoto T (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136:3933–3944PubMedCrossRefGoogle Scholar
  40. Spéder P, Ádám G, Noselli S (2006) Type ID unconventional myosin controls left–right asymmetry in Drosophila. Nature 440:803–807PubMedCrossRefGoogle Scholar
  41. Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124:1493–1506PubMedCrossRefGoogle Scholar
  42. Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417(6885):128–129CrossRefGoogle Scholar
  43. Wade RH, Chrétien D (1990) Characterization of microtubule protofilament numbers. J Mol Biol 212:775–786PubMedCrossRefGoogle Scholar
  44. Weiergräber OH, Eckho A, Granzin J (2006) Crystal structure of a plant immunophilin domain involved in regulation of MDR-type ABC transporters. FEBS Lett 580:251–255PubMedCrossRefGoogle Scholar
  45. Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613PubMedCrossRefGoogle Scholar
  46. Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Roquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312(5775):883PubMedCrossRefGoogle Scholar
  47. Yuen CYL, Pearlman RS, Silo-suh L, Hilson P, Carroll KL, Masson PH (2003) WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol 131:493–506PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2006

Authors and Affiliations

  • Takashi Ishida
    • 1
  • Siripong Thitamadee
    • 1
  • Takashi Hashimoto
    • 1
  1. 1.Nara Institute of Science and TechnologyGraduate School of Biological SciencesNaraJapan

Personalised recommendations