Journal of Plant Research

, 119:671 | Cite as

Estragole (4-allylanisole) is the primary compound in volatiles emitted from the male and female cones of Cycas revoluta

  • Hiroshi Azuma
  • Masumi Kono
Short Communication


The genus Cycas (Cycadaceae; gymnosperm) have circumstantially been considered to be wind-pollinated. The cones of Cycas revoluta Thunb., however, emit a strong unpleasant odor. The chemical profiles of floral scents often correlate with various pollination modes (pollinators). We collected and analyzed the volatiles emitted from male and female cones of C. revoluta native to Iriomote and Yonaguni Islands, Japan. The analyses indicated that estragole (4-allylanisole) dominated in the volatiles (67.0–92.7%), with small amounts of other benzenoids, e.g., anethole, methyl salicylate, methyl eugenol, and ethyl benzoate. Several fatty acid esters were also detected in the samples from Iriomote Island. The function of estragole in the reproductive biology of C. revoluta is discussed.


Cycad GC-MS Scent 



The authors thank Dr. L. B. Thien for his careful reading of the manuscript, and anonymous reviewers for helpful comments. This study was financially supported in part by JSPS Research Fellowships for Young Scientists.


  1. Donaldson JS (1997) Is there a floral parasite mutualism in cycad pollination? The pollination biology of Encephalartos villosus (Zamiaceae). Am J Bot 84:1398–1406CrossRefGoogle Scholar
  2. Hayes JL, Strom BL (1994) 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J Econ Entomol 87:1586–1594Google Scholar
  3. Hayes JL, Strom BL, Roton LM, Ingram Jr LL (1994) Repellent properties of the host compound 4-allylanisole to the southern pine beetle. J Chem Ecol 20:1595–1615CrossRefGoogle Scholar
  4. Hill KD (1994) The Cycas rumphii complex (Cycadaceae) in New Guinea and the Western Pacific. Aust Syst Bot 7:543–567CrossRefGoogle Scholar
  5. Hill KD, Stevenson DW, Osborne R (2004) The world list of cycads. Bot Rev 70:274–298CrossRefGoogle Scholar
  6. Jones DL (2002) Cycads of the World, 2nd edn. Smithsonian Institution Press, Washington DC Google Scholar
  7. Joseph GR, Kelsey G., Peck RW, Niwa CG (2001) Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of Central Oregon. J Chem Ecol 27:697–715PubMedCrossRefGoogle Scholar
  8. Kato M (2000) Anthophilous insect community and plant–pollinator interactions on Amami Islands in the Ryukyu Archipelago, Japan. Contr Biol Lab Kyoto Univ 29:157–252Google Scholar
  9. Keppel G (2001) Notes on the natural history of Cycas seemannii (Cycadaceae). S Pac J Nat Sci 19:35–41Google Scholar
  10. Knudsen JT, Tollsten L (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Bot J Linn Soc 113:263–284CrossRefGoogle Scholar
  11. Knudsen JT, Tollsten L (1995) Floral scent in bat-pollinated plants: a case of convergent evolution. Bot J Linn Soc 119:45–57Google Scholar
  12. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280CrossRefGoogle Scholar
  13. Lampman RL, Metcalf RL (1988) The comparative response of Diabrotica spp. (Coleoptera: Chrysomelidae) to volatile attractants. Environ Entomol 17:644–648Google Scholar
  14. Lampman RL, Metcalf RL, Andersen JF (1987) Semiochemical attractants of Diabrotica undecimpunctata howardi barber, southern corn rootworm, and Diabrotica virgifera virgifera leconte, the western corn rootworm (Coleoptera: Chrysomelidae). J Chem Ecol 13:959–975CrossRefGoogle Scholar
  15. Lance DR (1990) Factors affecting capture of corn rootworm beetles (Coleoptera: Chrysomelidae) at traps baited with nonpheromonal attractants. Environ Entomol 19:882–889Google Scholar
  16. Lance DR, Elliott NC (1991) Seasonal responses of corn rootworm beetles (Coleoptera: Chrysomelidae) to non-pheromonal attractants. J Entomol Sci 26:188–196Google Scholar
  17. Leung AY, Foster S (1996) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics, 2nd edn. Wiley, New York Google Scholar
  18. Metcalf RL, Lampman RL (1989) Estragole analogues as attractants for corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol 82:123–129Google Scholar
  19. Mound LA, Terry I (2001) Thrips pollination of the Central Australian cycad, Macrozamia macdonellii (Cycadales). Int J Plant Sci 162:147–155CrossRefGoogle Scholar
  20. Norstog KJ, Stevenson DW, Niklas KJ (1986) The role of beetles in the pollination of Zamia furfuracea (Zamiaceae). Biotropica 18:300–306CrossRefGoogle Scholar
  21. Niklas KJ, Norstog K (1984) Aerodynamics and pollen grain depositional patterns on cycad megastrobili: implications on the reproduction of three cycad genera (Cycas, Dioon, and Zamia). Bot Gaz 145:92–104CrossRefGoogle Scholar
  22. Oberprieler RG (1999) Systematics and evolution of the cycad-associated weevil genus Apinotropis Jordan (Coleoptera: Anthribidae). Afr Entomol 7:1–33Google Scholar
  23. Ornduff R (1991) Size classes, reproductive behavior, and insect associates of Cycas media (Cycadaceae) in Australia. Bot Gaz 152:203–207CrossRefGoogle Scholar
  24. Ornduff R (1992) Features of coning and foliar phenology, size classes, and insect associates of Cycas armstrongii (Cycadaceae) in the Northern Territory, Australia. Bull Torrey Bot Club 119:39–43CrossRefGoogle Scholar
  25. Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35:76–85CrossRefGoogle Scholar
  26. Pellmyr O, Tang W, Groth I, Bergström G, Thien LB (1991) Cycad cone and angiosperm floral volatiles: inferences for the evolution of insect pollination. Biochem Syst Ecol 19:623–627CrossRefGoogle Scholar
  27. van der Pijl L (1961) Ecological aspects of flower evolution. II. Zoophilous flower classes. Evolution 15:44–59CrossRefGoogle Scholar
  28. Raguso RA, Pichersky E (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1. Linalool biosynthesis in flowering plants. Plant Species Biol 14:95–120CrossRefGoogle Scholar
  29. Rappaport NG, Stein JD, Del Rio Mora AA, Debarr G, De Groot P, Mori S (2000) Responses of Conophthorus spp. (Coleoptera: Scolytidae) to behavioral chemicals in field trials: a transcontinental perspective. Can Entomol 132:925–937CrossRefGoogle Scholar
  30. Rattray G (1913) Notes on the pollination of some south African cycads. Trans R Soc S Afr 3:259–270Google Scholar
  31. Tang W (1987a) Insect pollination in the cycad Zamia pumila (Zamiaceae). Am J Bot 74:90–99CrossRefGoogle Scholar
  32. Tang W (1987b) Heat production in cycad cones. Bot Gaz 148:165–174CrossRefGoogle Scholar
  33. Tang W, Oberprieler RG, Yang S-L (1999) Beetles (Coleoptera) in cones of Asian Cycas: diversity, evolutionary patterns, and implications for Cycas taxonomy. In: Chen C-J (ed) Biology and conservation of cycads. Proceedings of the fourth international conference on cycad biology. International Academic, Beijing, pp 280–297Google Scholar
  34. Terry I (2001) Thrips and weevils as dual, specialist pollinators of the Australian cycad Macrozamia communis (Zamiaceae). Int J Plant Sci 162:1293–1305CrossRefGoogle Scholar
  35. Terry I, Moore CJ, Forster PI, Walter GH, Machin PJ, Donaldson JD (2004a) Pollination ecology of the genus Macrozamia: cone volatiles and pollinator specificity. In: Lindstrom A (ed) Proceedings of the 6th international conference on cycad biology, Pattaya, Thailand. 2002. Nong Nooch Tropical Botanical Garden, Thailand, pp 155–169Google Scholar
  36. Terry I, Moore CJ, Walter GH, Forster PI, Roemer RB, Donaldson JD, Machin PJ (2004b) Association of cone thermogenesis and volatiles with pollinator specificity in Macrozamia cycads. Plant Sys Evol 243:233–247CrossRefGoogle Scholar
  37. Terry I, Walter GH, Donaldson JS, Snow E, Forster PI, Machin PJ (2005) Pollination of Australian Macrozamia cycads (Zamiaceae): effectiveness and behavior of specialist vectors in a dependent mutualism. Am J Bot 92:931–940Google Scholar
  38. Yang S-L, Tang W, Hill KD, Vatcharakorn P (1999) Cycas pranburiensis (Cycadaceae), a new cycad from Thailand. Brittonia 51:44–47CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Botany, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations