Journal of Plant Research

, Volume 119, Issue 1, pp 31–36

The integration of cell proliferation and growth in leaf morphogenesis

JPR Symposium


A number of recent publications have assessed the outcome on leaf development of targeted manipulation of cell proliferation. The results of these investigations have awakened interest in the long-standing debate in plant biology on the precise role of cell division in morphogenesis. Does cell proliferation drive morphogenesis (cell theory) or is it subservient to a mechanism which acts at the whole organ level to regulate morphogenesis (organismal theory)? In this review, the central role of growth processes (distinct from cell proliferation) in morphogenesis is highlighted and the limitations in our understanding of the basic mechanisms of plant growth control are highlighted. Finally, an attempt is made to demonstrate how sequential local co-ordination of growth might provide an interpretation of some of the recent observations on cell proliferation and leaf morphogenesis.


Leaf development Morphogenesis Cell growth Cell division 


  1. Beemster GTS, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158CrossRefPubMedGoogle Scholar
  2. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2004) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefGoogle Scholar
  3. Bharathan G, Goliber T, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXL gene expression during development. Science 296:1858–1860CrossRefPubMedGoogle Scholar
  4. Byrne ME (2005) Networks in leaf development. Curr Opin Plant Biol 8:59–66CrossRefPubMedGoogle Scholar
  5. Campanomi P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948CrossRefPubMedGoogle Scholar
  6. Chen J-G, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 Is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911CrossRefPubMedGoogle Scholar
  7. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326CrossRefPubMedGoogle Scholar
  8. Curaba J, Herzog M, Vachon G (2003) GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA binding activity and is regulated by KNAT1. Plant J 33:305–317CrossRefPubMedGoogle Scholar
  9. Dengler NG, Dengler RE, Kaplan DR (1982) The mechanism of plication inception in Palm leaves: histogenic observations on the pinnate leaf of Chryalidocarpus lutescens. Can J Bot 60:2976–2998Google Scholar
  10. Doonan J (2000) Social controls on cell proliferation in plants. Curr Opin Plant Biol 3:482–487CrossRefPubMedGoogle Scholar
  11. De Veylder L, Beeckman T, Beemster GTS, Engler JD, Ormenese S, Maes S, Naudts M, Van der Schueren E, Jacqmard A, Engler G, Inzé D (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J 21:1360–1368CrossRefPubMedGoogle Scholar
  12. De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1667CrossRefPubMedGoogle Scholar
  13. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1478CrossRefPubMedGoogle Scholar
  14. Fleming AJ (2002). The mechanism of leaf morphogenesis. Planta 216:17–22PubMedGoogle Scholar
  15. Folkers U, Kirik V, Scöbinger U, Falk S, Krishnakumar S, Pollock MA, Oppenheimer DG, Day I, Reddy AR, Jürgens G, Hülskamp M (2002) The cell morphogenesis gene ANGUSTOFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO J 21:1280–1288CrossRefPubMedGoogle Scholar
  16. Harrison CJ, Corley SB, Moylan EC, Alexander DL, Scotland RW, Langdale JA (2005) Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434:509–514CrossRefPubMedGoogle Scholar
  17. Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberelin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565CrossRefPubMedGoogle Scholar
  18. Inze D (2005) Green light for the cell cycle. EMBO J 24:657–662CrossRefPubMedGoogle Scholar
  19. Kaplan DR (2001) Fundamental concepts of leaf morphology and morphogenesis: a contribution to the interpretation of molecular genetic mutants. Int J Plant Sci 162:465–474CrossRefGoogle Scholar
  20. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–708CrossRefPubMedGoogle Scholar
  21. Kim GT, Shoda K, Tsuge T, Cho K-H, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement ofcortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21:1267–1279CrossRefPubMedGoogle Scholar
  22. Kim GT, Tsukaya H, Saito Y, Uchimaya H (1999) Changes in the shape of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc Natl Acad Sci USA 96:9433–9437CrossRefPubMedGoogle Scholar
  23. Kim GT, Tsukaya H., Uchimaya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12:2381–2391PubMedGoogle Scholar
  24. Lee Y, Choi D, Kende H. (2001) Expansins: ever expanding numbers and functions. Curr Opin Plant Biol 4:527–532CrossRefPubMedGoogle Scholar
  25. McConnell, Emery J, Eshed Y, Bao, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713CrossRefPubMedGoogle Scholar
  26. Meyerowitz EM (1996) Plant development: local control, global patterning. Curr Opin Genet Dev 6:475–479CrossRefPubMedGoogle Scholar
  27. Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev 17:2088–2093PubMedGoogle Scholar
  28. Nath U, Crawford BCW, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407CrossRefPubMedGoogle Scholar
  29. Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019CrossRefPubMedGoogle Scholar
  30. Nijhout HF (2003) The control of growth. Development 130:5863–5867CrossRefPubMedGoogle Scholar
  31. Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof Y-D, Kleine-Vehn J, Morris DA, Emans N, Jurgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256CrossRefPubMedGoogle Scholar
  32. Rudra D, Warner JR (2004) What better measure than ribosome synthesis? Genes Dev 18:243–2436CrossRefGoogle Scholar
  33. Tsiantis M, Hay A (2003) Comparative plant development: the time of the leaf? Nat Rev Genetics 4:169–180CrossRefGoogle Scholar
  34. Tsukaya H (2002) Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theories. Int Rev Cytol 217:1–39PubMedGoogle Scholar
  35. Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6:57–62CrossRefPubMedGoogle Scholar
  36. Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13:3378–3388PubMedGoogle Scholar
  37. Van Volkenburgh E (1999) Leaf expansion- am integrating plant behaviour. Plant Cell Environ 22:1463–1473CrossRefGoogle Scholar
  38. Veit B (2004) Determination of cell fate in apical meristems. Curr Opin Plant Biol 7:57–64CrossRefPubMedGoogle Scholar
  39. Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. (1995) Evidence of a crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations