Journal of Plant Research

, Volume 118, Issue 4, pp 271–284 | Cite as

Molecular phylogenetics of subtribe Aeridinae (Orchidaceae): insights from plastid matK and nuclear ribosomal ITS sequences

  • Topik Hidayat 
  • Tomohisa Yukawa
  • Motomi Ito
Original Article


We conducted phylogenetic analyses using two DNA sequence data sets derived from matK, the maturase-coding gene located in an intron of the plastid gene trnK, and the internal transcribed spacer region of 18S–26S nuclear ribosomal DNA to examine relationships in subtribe Aeridinae (Orchidaceae). Specifically, we investigated (1) phylogenetic relationships among genera in the subtribe, (2) the congruence between previous classifications of the subtribe and the phylogenetic relationships inferred from the molecular data, and (3) evolutionary trends of taxonomically important characters of the subtribe, such as pollinia, a spurred lip, and a column foot. In all, 75 species representing 62 genera in subtribe Aeridinae were examined. Our analyses provided the following insights: (1) monophyly of subtribe Aeridinae was tentatively supported in which 14 subclades reflecting phylogenetic relationships can be recognized, (2) results are inconsistent with previous classifications of the subtribe, and (3) repeated evolution of previously emphasized characters such as pollinia number and apertures, length of spur, and column foot was confirmed. It was found that the inconsistencies are mainly caused by homoplasy of these characters. At the genus level, Phalaenopsis, Cleisostoma, and Sarcochilus are shown to be non-monophyletic.


Aeridinae ITS matK Molecular phylogenetics Orchidaceae 



We gratefully acknowledge Dedy Darnaedi and Dwi Murti Puspitaningtyas for granting a permit to sample some materials; Pheravut Wongsawad and Haji Nazarudin for guidance during our fieldwork in Thailand and Malaysia; and Koichi Kita, Tomoko Fujimoto, Seishiro Aoki, and Daisuke Yoshimoto for technical assistance. We would like to thank Mark W. Chase and an anonymous reviewer for helpful comments and criticisms on the manuscript. We also thank Kazuhiro Suzuki for skillful cultivation of the plants. This study was partly supported by a Grant-in-Aid for Scientific Research from JSPS (MI).


  1. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann MO Bot Gard 82:247–277Google Scholar
  2. Bateman RM, Hollingsworth PM, Preston J, Yi-Bo L, Pridgeon AM, Chase MW (2003) Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot J Linn Soc 142:1–40Google Scholar
  3. van den Berg C, Higgins WE, Dressler RL, Whitten WM, Soto Arenas MA, Culham A, Chase MW (2000) A phylogenetic analysis of Laeliinae (Orchidaceae) based on sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA. Lindleyana 15:96–114Google Scholar
  4. van den Berg C, Goldman DH, Freudenstein JV, Pridgeon AM, Cameron KM, Chase MW (2005) An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). Am J Bot 92:613–624Google Scholar
  5. Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224Google Scholar
  6. Carlsward BS, Whitten WM, Williams NH (2003) Molecular phylogenetics of Neotropical leafness Angraecinae (Orchidaceae): reevaluation of generic concepts. Int J Plant Sci 164:43–51Google Scholar
  7. Chase MW (2005) Classification of Orchidaceae in the age of DNA data. Curtis’s Bot Mag 1:2–7Google Scholar
  8. Christenson EA (1986a) Nomenclatural changes in the Orchidaceae subtribe Sarcanthinae. Selbyana 9:167–170Google Scholar
  9. Christenson EA (1986b) Dyakia, a new genus from Borneo. Orchid Dig 50:63–65Google Scholar
  10. Christenson EA (1987) The taxonomy of Aerides and related genera. Proceedings of the 12th World Orchid Conference, TokyoGoogle Scholar
  11. Christenson EA (1994) Taxonomy of the Aeridinae with an infrageneric classification of Vanda Jones ex R.B. Proceedings of the 14th World Orchid Conference. HMSO Publications, LondonGoogle Scholar
  12. van den Cingel NA (2001) An atlas of orchid pollination; America, Africa, Asia and Australia. AA Balkema, RotterdamGoogle Scholar
  13. Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 19:432–437Google Scholar
  14. Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, CambridgeGoogle Scholar
  15. Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides, PortlandGoogle Scholar
  16. Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319Google Scholar
  17. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  18. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  19. Freudenstein JV, Rasmussen FN (1999) What does morphology tell us about orchid relationships? a cladistic analysis. Am J Bot 86:225–248Google Scholar
  20. Garay LA (1972) On the systematics of the monopodial orchids I. Bot Mus Lealf Harv Univ 23:149–212Google Scholar
  21. Goldman DH, Freudenstein JV, Kores PJ, Molvray M, Jarrell DC, Whitten WM, Cameron KM, Jansen RJ, Chase MW (2001) Phylogenetics of Arethuseae (Orchidaceae) based on plastid matK and rbcL sequences. Syst Bot 26:670–695Google Scholar
  22. Gravendeel B, Chase MW, Vogel EFD, Roos MC, Mes THM, Bachman K (2001) Molecular phylogeny of Coelogyne (Epidendroideae; Orchidaceae) based on plastid RFLPS, matK and nuclear ribosomal ITS sequences: evidence for polyphyly. Am J Bot 88:1951–1927Google Scholar
  23. Holttum RE (1958) Evolutionary trends in the sarcanthine orchids. Proceedings of the Second World Orchid Conference. Harvard University Printing Office, CambridgeGoogle Scholar
  24. Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11:152–158Google Scholar
  25. Jarrell DC, Clegg MT (1995) Systematic implications of the chloroplast-encoded matK gene on the tribe Vandeae (Orchidaceae). Am J Bot 82 (Suppl):137Google Scholar
  26. Johnson LE, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae sensu stricto. Syst Bot 19:143–156Google Scholar
  27. Johnson LE, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann MO Bot Gard 82:149–175Google Scholar
  28. Kamemoto H (1963) Chromosome and species relationships in the Vanda alliance. Proceedings of the Fourth World Orchid Conference, SingaporeGoogle Scholar
  29. Kamemoto H, Shindo K (1962) Genome relationships in interspecific and intergeneric hybrids of Renanthera. Am J Bot 49:737–748Google Scholar
  30. Kelchner SA (2000) The evolution of noncoding chloroplast DNA and its application in plant systematics. Ann MO Bot Gard 87:482–498Google Scholar
  31. Kocyan A, Qiu Y-L, Endress PK, Conti E (2004) A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F, and matK sequences. Plant Syst Evol 247:203–213Google Scholar
  32. Koehler S, Williams NH, Whitten WM, Maria do Carmo E do Amaral (2002) Phylogeny of the Bifrenaria (Orchidaceae) complex based on morphology and sequence data from nuclear rDNA internal transcribed spacers (ITS) and chloroplast trnL trnF region. Int J Plant Sci 163:1055–1066Google Scholar
  33. Mickevich MF, Farris JS (1981) The implications of congruence in Menidia. Syst Zool 30:351–370Google Scholar
  34. Moritz C, Hillis DM (1996) Molecular systematics: context and controversies. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, MA, pp 1 –13Google Scholar
  35. Olmstead RG, Sweere JA (1995) Combined data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481Google Scholar
  36. Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879Google Scholar
  37. Pridgeon AM, Solano R, Chase MW (2001) Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am J Bot 88:2286–2308Google Scholar
  38. Rice R (2004) A new vandoid genus for the Papuasian Orchidaceae. OASIS J 3(Suppl):2–3Google Scholar
  39. Ryan A, Whitten WM, Johnson MAT, Chase MW (2000) A phylogenetic assessment of Lycaste and Anguloa (Orchidaceae; Maxillarieae). Lindleyana 15:33–45Google Scholar
  40. Salazar GA, Chase MW, Soto Arenas MA, Ingrouille M (2003) Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Am J Bot 90:777–795Google Scholar
  41. Schlechter R (1913) Die Orchidaceen von Deutsch-New-Guinea: Sarcanthinae. Fedde Rep Beih 1:953–1039Google Scholar
  42. Schlechter R (1926) Das System der Orchidaceen. Notizbl Bot Garten Mus Berlin-Dahlem 9:563–591Google Scholar
  43. Seidenfaden G (1973) Contributions to the orchid flora of Thailand V: Aerides. Bot Tidsskr 68:68–80Google Scholar
  44. Seidenfaden G (1975) Orchid genera in Thailand II: Cleisostoma Bl. Dan Bot Ark 29(3):1–79Google Scholar
  45. Seidenfaden G (1988) Orchid genera in Thailand XIV: fifty-nine vandoid genera. Opera Bot 95:1–357Google Scholar
  46. Senghas K (1988) Eine neue gliederung der subtribus Aeridinae (=Sarcanthinae). Orchidee 39(6):219–223Google Scholar
  47. Shindo K, Kamemoto H (1962) Genome relationships of Neofinetia Hu and some allied genera of the Orchidaceae. Cytologia 27:402–409Google Scholar
  48. Shindo K, Kamemoto H (1963) Karyotype analysis of some sarcanthine orchids. Am J Bot 50:73–79Google Scholar
  49. Smith JJ (1934) Artificial key to the orchid genera of the Netherlands Indies, together with those of New Guinea, the Malay Peninsula and the Philippines. Blume I:194–215Google Scholar
  50. Soliva M, Kocyan A, Widmer A (2001) Molecular phylogenetics of the sexually deceptive orchid genus Ophrys (Orchidaceae) based on nuclear and chloroplast DNA sequences. Mol Phylogenet Evol 20:78–88Google Scholar
  51. Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic systematics. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematic of plants II, DNA sequencing. Kluwer Academic, Dordrecht, pp 1–42Google Scholar
  52. Steele KP, Vilgays R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142Google Scholar
  53. Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32Google Scholar
  54. Swofford DL (1998) PAUP*4.0b10. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  55. Tanaka R, Kamemoto H (1961) Meiotic chromosome behaviour in some intergeneric hybrids of the Vanda alliance. Am J Bot 48:573–582Google Scholar
  56. Tanaka R, Kamemoto H (1984) Chromosome in orchids: counting and numbers. In: Arditti J (ed) Orchid biology reviews and perspectives III. Cornell University Press, Ithaca, pp 325–410Google Scholar
  57. Tara M, Kamemoto H (1970) Karyotype relationships in the Sarcanthinae (Orchidaceae). Am J Bot 57:176–182Google Scholar
  58. Whitten WM, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Am J Bot 87:1842–1856Google Scholar
  59. Yukawa T, Kita K, Handa T (2002a) DNA phylogeny and morphological diversification of Australian Dendrobium (Orchidaceae). In: Wilson KL, Morrison DA (eds) Monocots: systematic and evolution. CSIRO, Melbourne, pp 465–471Google Scholar
  60. Yukawa T, Miyoshi K, Yokohama J (2002b) Molecular phylogeny and character evolution of Cymbidium (Orchidaceae). Bull Natl Sci Mus Tokyo 28:129–139Google Scholar
  61. Zwick DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Department of Biological Education, Faculty of Math and Science EducationIndonesia University of Education (UPI Bandung)BandungIndonesia
  3. 3.Tsukuba Botanical GardenNational Science MuseumTsukubaJapan
  4. 4.Department of General Systems Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyo 153-8902Japan

Personalised recommendations