Journal of Plant Research

, Volume 118, Issue 1, pp 37–41 | Cite as

Nuclear DNA content in the genus Hepatica (Ranunculaceae)

  • Tomoo Mabuchi
  • Hisashi Kokubun
  • Masahiro Mii
  • Toshio AndoEmail author
Original Article


Using flow cytometry, we measured the nuclear DNA contents of all known taxa in Hepatica. Nuclear DNA content of Hepatica falconeri (diploid, crenate leaf lobes) was significantly lower than that of diploid entire species. Among the tetraploid species, crenate species had lower DNA contents than the entire taxon H. nobilis var. pubescens. The DNA content of the tetraploid species was more than double that of the diploid species among the same leaf-type groups.


Anemone Flow cytometry Hepatica PI/DAPI ratio Ranunculaceae Speciation 



The authors would like to thank Kei-ichiro Mishiba of Iwate Bio-technology Research Center for the useful information; Kozo Nishikawa and Yoshihiko Furuta of Gifu University, and Katsumi Kataoka of Tamagawa University for their help with the statistical analysis. We also thank the following people for supplying the materials: Mikinori Ogisu (Hepatica henryi and H. yamatutai), Koichi Iwafuchi (H. nobilis from Spain), Tokio Naito (H. transsilvanica), and Kyohei Matsuda (H. nobilis from Switzerland).


  1. Bennett MD, Smith JB (1971) The 4C nuclear DNA content of several Hordeum genotypes. Can J Genet Cytol 13:607–611Google Scholar
  2. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 274:227–274Google Scholar
  3. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514CrossRefGoogle Scholar
  4. Buitendijk JH, Boon EJ, Ramanna MS (1997) Nuclear content in twelve species of Alstroemeria L. and some of their hybrids. Ann Bot 79:343–353CrossRefGoogle Scholar
  5. Ehrendorfer F, Samuel R (2001) Contributions to a molecular phylogeny and systematics of Anemone and related genera (Ranunculaceae–Anemoninae). Acta Phytotax Sin 39:293–307Google Scholar
  6. Furuta Y, Nishikawa K, Tanino T (1974) Stability in DNA content of AB genome component of common wheat during the past seven thousand years. Jpn J Genet 49:179–187Google Scholar
  7. Hara H, Kurosawa S (1958) Differentiation within Anemone Hepatica L. of Japan. J Jpn Bot 33:265–274Google Scholar
  8. Heimburger M (1959) Cytotaxonomic studies in the genus Anemone. Can J Bot 37:587–612Google Scholar
  9. Hoot SB, Reznicek AA, Palmer JD (1994) Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. Systematic Bot 19:169–200Google Scholar
  10. Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613Google Scholar
  11. Kitamura S, Murata G (1962) New names and new conceptions adopted in our coloured illustration of herbaceous plants of Japan II (Chripetalae). Acta Phytotax Geobot 20:195–208Google Scholar
  12. Kurita M (1955) Cytological studies in Ranunculaceae. II. The karyotype of Anemone and Hepatica. Bot Mag Tokyo 68:187–190Google Scholar
  13. Kurita M (1957) Chromosome studies in Ranunculaceae. I. Karyotypes of the subtribe Anemoninae. Rep Biol Inst Ehime Univ 1:1–10Google Scholar
  14. Mabuchi T (1998) Intra-species differentiation of Japanese Hepatica nobilis. PhD Thesis, Gifu University, Gifu, JapanGoogle Scholar
  15. Mabuchi T, Ogisu M, Xu JM (1987) Chromosome number and karyotype of three species of Anemone hepatica group. J Jpn Bot 62:49–53Google Scholar
  16. Manzini G, Narcellona ML, Avitabile M, Quadrifoglio F (1983) Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids. Nucleic Acids Res 11:8861–8876Google Scholar
  17. Mishiba K, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot 85:665–673CrossRefGoogle Scholar
  18. Nishikawa K, Furuta Y (1969) DNA content per nucleus in relation to phylogeny of wheat and its relatives. Jpn J Genet 44:23–29Google Scholar
  19. Ogisu M, Awan MR, Mabuchi T, Mikanagi Y (2002) Morphology, phenology and cytology of Hepatica falconeri in Pakistan. Kew Bull 57:943–953Google Scholar
  20. Raina SN, Parida A, Koul KK, Salimath SS, Bisht MS, Raja V (1994) Associated chromosomal DNA changes in polyploids. Genome 37:560–564Google Scholar
  21. Rees H, Walters MR (1965) Nuclear DNA and the evolution of wheat. Heredity 20:73–82Google Scholar
  22. Rothfels K, Sexsmith E, Heimburger M, Kause MO (1966) Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). Chromosoma (Berl) 20:54–74CrossRefGoogle Scholar
  23. Schuettpelz E, Hoot SB, Samuel R, Ehrendorfer F (2002) Multiple origins of southern hemisphere Anemone (Ranunculaceae) based on plasitid and nuclear sequence data. Plant Syst Evol 231:143–151CrossRefGoogle Scholar
  24. Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603Google Scholar
  25. Thomson T (1852) Anemone falconeri Thoms. Hooker’s Icones Plantarum 9:t899Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag 2005

Authors and Affiliations

  • Tomoo Mabuchi
    • 1
  • Hisashi Kokubun
    • 2
  • Masahiro Mii
    • 3
  • Toshio Ando
    • 3
    Email author
  1. 1.2-11-5 Sagami-ohnoSagamihara, KanagawaJapan
  2. 2.Graduate School of Science and TechnologyChiba UniversityChibaJapan
  3. 3.Faculty of HorticultureChiba UniversityChibaJapan

Personalised recommendations