Advertisement

Journal of Plant Research

, Volume 117, Issue 5, pp 409–419 | Cite as

Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution

  • Okihito Yano
  • Teruo Katsuyama
  • Hiromi Tsubota
  • Takuji HoshinoEmail author
Original Article

Abstract

ITS sequence data were used to estimate the phylogeny of 24 Japanese Eleocharis species and to make karyomorphological observations on 19 of these taxa. Two major clades were identified in Japanese Eleocharis molecular phylogenetic trees: (1) one including all species of section Limnochloa, and (2) another comprising two sections, Pauciflorae and Eleocharis. Phylogenetic analysis including both Japanese and North American species also shows strong support for monophyly of the Mutatae/Limnochloa clade. The width of the spikelets in the species Mutatae/Limnochloa is the same as that of the culms, indicating that the relative widths of spikelets and culms are useful characteristics for classification. Two major clades were supported by karyomorphological data. All taxa of section Limnochloa had very small chromosomes, while sections Pauciflorae and Eleocharis had large chromosomes. The basic chromosome number of sections Eleocharis and Pauciflorae is thought to be x=5. Chromosomal evolution in the genus Eleocharis with diffuse centromeric chromosomes may be caused by both aneuploidization and polyploidization. Our data suggest that a 3-bp insertion near the 3′ end of the 5.8S gene is useful for intrageneric delimitations of the genus Eleocharis.

Keywords

Chromosomal evolution Cyperaceae Diffuse centromeric chromosome Eleocharis ITS phylogeny Karyotype 

Notes

Acknowledgements

The authors thank Dr. Marcia J. Waterway for critical review and invaluable comments on the paper. We also thank Dr. Eisuke Hayasaka, Dr. Hiroshi Ikeda, Kisaku Kameyama, Masaaki Komizunai, Dr. Masatsugu Yokota, Satoko Ozaki, Susumu Mitani, and Tomomi Masaki for their great help on field trips and in collecting plant materials.

References

  1. Adachi J, Hasegawa M (1996) Computer science monographs 28. Molphy version 2.3. Programs for molecular phylogenetics base on maximum likelihood. Institute of Statistical Mathematics, TokyoGoogle Scholar
  2. Bruhl JJ (1995) Sedge genera of the world: relationships and a new classification of the Cyperaceae. Aust J Syst Bot 8:125–305Google Scholar
  3. Clarke CB (1909) Illustrations of Cyperaceae. LondonGoogle Scholar
  4. Felsenstein J (1980–2001) PHYLIP (Phylogeny Inference Package) and manual, version 3.573c. Dept Genetics, Univ of Washington, SeattleGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  8. Goetghebeur P (1985) Studies in Cyperaceae 6. Nomenclature of the suprageneric taxa in the Cyperaceae. Taxon 34:617–632Google Scholar
  9. Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670CrossRefPubMedGoogle Scholar
  10. González-Elizondo MS, Peterson PM (1997) A classification of and key to the supraspecific taxa in Eleocharis. Taxon 46:433–449Google Scholar
  11. Håkansson A (1954) Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis palustris. Hereditas 40:325–345Google Scholar
  12. Harms LJ (1968) Cytotaxonomic studies in Eleocharis subser. palustres: central united taxa. Am J Bot 55:966–974Google Scholar
  13. Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145Google Scholar
  14. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedGoogle Scholar
  15. Hodkinson TR, Chase MW, Lledo D, Salamin N, Renvoize SA (2002) Molecular phylogeny of Miscanthus s.l., Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) using DNA sequences from the ITS nuclear ribosomal DNA and the plastid trnL–F regions. J Plant Res 115:381–392CrossRefPubMedGoogle Scholar
  16. Hoshino T (1987) Karyomorphological studies on 6 taxa of Eleocharis in Japan. Bull Okayama Univ Sci 22A:305–312Google Scholar
  17. Hoshino T, Rajbhandari KR, Ohba H (2000) Cytological studies of eleven species of Cyperaceae collected from central Nepal. Cytologia 65:219–224Google Scholar
  18. Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1994) Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37:112–120PubMedGoogle Scholar
  19. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179PubMedGoogle Scholar
  20. Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of the chloroplasts. J Mol Evol 31:151–160Google Scholar
  21. Koyama T (1961) Classification of the family Cyperaceae 1. J Fac Sci Univ Tokyo Sect III Bot 8:84–99Google Scholar
  22. Kukkonen I (1998) Cyperaceae. In: Rechinger KH (ed) Flora Iranica, vol 173. Akademische Druck- u. Verlagsanstalt, GrazGoogle Scholar
  23. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software, BioinformaticsGoogle Scholar
  24. Muasya AM, Simpson DS, Chase MW, Culham A (1998) An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Plant Syst Evol 211:257–271Google Scholar
  25. Nijalingappa BHM (1973) Cytological studies in Eleocharis. Caryologia 26:513–520Google Scholar
  26. Ohwi J (1943) Cyperaceae Japonicae. II. A synopsis of the Rhynchosporoideae and Sciropoideae of Japan, including the Kuriles, Saghalien, Korea and Formosa. Mem Coll Sci Kyoto Imp Univ Ser B Biol 18:29–49Google Scholar
  27. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48PubMedGoogle Scholar
  28. Rivadavia F, Kondo K, Kato M, Hasebe M (2003) Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. Am J Bot 90:123–130Google Scholar
  29. Roalson EH, Friar EA (2000) Infrageneric classification of Eleocharis (Cyperaceae) revisited:evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Syst Bot 25:323–336Google Scholar
  30. Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341Google Scholar
  31. Shimodaira H (2000) Another calculation of the p-value for the problem of regions using the scaled bootstrap resamplings. Tech Rep No 2000–35. Stanford Univ, CaliforniaGoogle Scholar
  32. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508CrossRefPubMedGoogle Scholar
  33. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247Google Scholar
  34. Simpson DA, Furness CA, Hodkinson TR, Muthama Muasya A, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am J Bot 90:1071–1086Google Scholar
  35. Smith SG, Bruhl JJ, González-Elizondo MS, Menapace FJ (2002) Eleocharis. In: Flora of North America editorial committee (ed) Flora of North America, vol 23. Magnoliophyta: Commeliaidae (in part) Cyperaceae. Oxford University Press, New York, pp 60–120Google Scholar
  36. Starr JR, Bayer RJ, Ford BA (1999) The phylogenetic position of Carex section Phyllostachys and ITS implication for phylogeny and subgeneric circumscription in Carex (Cyperaceae). Am J Bot 86:563–577PubMedGoogle Scholar
  37. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969Google Scholar
  38. Svenson HK (1929) Monographic studies in the genus Eleocharis. Rhodora 31:121–135; 167–191Google Scholar
  39. Svenson HK (1934) Monographic studies in the genus Eleocharis. Rhodora 36:377–389Google Scholar
  40. Svenson HK (1937) Monographic studies in the genus Eleocharis. Rhodora 39:271–272Google Scholar
  41. Svenson HK (1939) Monographic studies in the genus Eleocharis. Rhodora 41:3–19; 95–104Google Scholar
  42. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0b 10. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  43. Tanaka N (1948) The problem of aneuploidy. Biological contribution in Japan (in Japanese), 4. Hokuryukan, Tokyo, pp 136–317Google Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  45. Tsubota H, Akiyama H, Yamaguchi T, Deguchi H (2001) Molecular phylogeny of the genus Trismegistia and related genera (Sematophyllaceae, Musci) based on chloroplast rbcL sequences. Hikobia 13:529–549Google Scholar
  46. Tsubota H, Ageno Y, Estébanez B, Yamaguchi T, Deguchi H (2003) Molecular phylogeny of the Grimmiales (Musci) based on chloroplast rbcL sequences. Hikobia 14:55–70Google Scholar
  47. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, New York, pp 315–22Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag  2004

Authors and Affiliations

  • Okihito Yano
    • 1
  • Teruo Katsuyama
    • 2
  • Hiromi Tsubota
    • 3
  • Takuji Hoshino
    • 1
    Email author
  1. 1.Department of Biosphere-Geosphere System Science, Graduate School of InformaticsOkayama University of ScienceOkayama 700-0005Japan
  2. 2.Kanagawa Prefectural Museum of Natural HistoryKanagawaJapan
  3. 3.Department of Biological Science, Graduate School of ScienceHiroshima UniversityHiroshimaJapan

Personalised recommendations