Journal of Plant Research

, Volume 117, Issue 2, pp 109–120 | Cite as

Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences

  • Minoru N. Tamura
  • Jun Yamashita
  • Shizuka Fuse
  • Masatake Haraguchi
Original Article


Using matK and rbcL sequences (3,269 bp in total) from 113 genera of 45 families, we conducted a combined analysis to contribute to the understanding of major evolutionary relationships in the monocotyledons. Trees resulting from the parsimony analysis are similar to those generated by earlier single or multiple gene analyses, but their strict consensus tree provides much better resolution of relationships among major clades. We find that Acorus (Acorales) is a sister group to the rest of the monocots, which receives 100% bootstrap support. A clade comprising Alismatales is diverged as the next branch, followed successively by Petrosaviaceae, the Dioscoreales–Pandanales clade, Liliales, Asparagales and commelinoids. All of these clades are strongly supported (with more than 90% bootstrap support). The sister-group relationship is also strongly supported between Alismatales and the remaining monocots (except for Acorus) (100%), between Petrosaviaceae and the remaining monocots (except for Acorus and Alismatales) (100%), between the clade comprising Dioscoreales and Pandanales and the clade comprising Liliales, Asparagales and commelinoids (87%), and between Liliales and the Asparagales–commelinoids clade (89%). Only the sister-group relationship between Asparagales and commelinoids is weakly supported (68%). Results also support the inclusion of Petrosaviaceae in its own order Petrosaviales, Nartheciaceae in Dioscoreales and Hanguanaceae in Commelinales.


Hanguanaceae matK Molecular phylogeny Monocotyledons Petrosaviaceae rbcL 



We express our sincere gratitude to Hiroshi Tobe for helpful comments and critical reading of the manuscript, to Wendy B. Zomlefer and Hidetoshi Nagamasu for supplying us with plant materials used in this study, to Pu Fading of Chengdu Institute of Biology, Academia Sinica, China and staff members of Wawushan National Forest Park, China and Teshio Experimental Forest, Hokkaido University, Japan for their assistance in various ways in fieldwork, and to Moritoshi Iino for allowing us to use his ABI auto-sequencer freely. The study was supported in part by Grants-in-Aid for Scientific Research (11640701 and 14405012) from the Ministry of Education, Science and Culture, Japan.

Supplementary material

Appendix Insertion/deletion of DNA fragments into/from the matK gene region postulated based on the gaps recognized in comparisons between aligned DNA sequences

supp.pdf (98 kb)
(PDF 42 KB)


  1. APG (The Angiosperm Phylogeny Group) II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436Google Scholar
  2. Bharathan G, Zimmer EA (1995) Early branching events in monocotyledons—partial 18S ribosomal DNA sequence analysis. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution, vol 1. Royal Botanic Gardens, Kew, pp 81–107Google Scholar
  3. Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224Google Scholar
  4. Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, Eguiarte LE, Hartwell J, Fay MF, Caddick LR, Cameron KM, Hoot S (1995) Molecular systematics of Lilianae. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution, vol 1. Royal Botanic Gardens, Kew, pp 109–137Google Scholar
  5. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen S, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580Google Scholar
  6. Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Chris Pires J (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16Google Scholar
  7. Cho Y, Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Mol Biol Evol 16:1155–1165PubMedGoogle Scholar
  8. Davis JI, Simmons MP, Stevenson DW, Wendel JF (1998) Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the Monocotyledons using mitochondrial atpA sequences. Syst Biol 47:282–310CrossRefPubMedGoogle Scholar
  9. Duvall MR, Learn GH Jr, Eguiarte LE, Clegg MT (1993) Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. Proc Natl Acad Sci USA 90:4641–4644PubMedGoogle Scholar
  10. Eguiarte LE, Duvall MR, Learn GH Jr, Clegg MT (1992) In search of the Agave family, or Hutchinson (Agavaceae) vs. Dahlgren (Asparagales): an analysis based on the rbcL chloroplast sequence. Ann Mo Bot Gard (in press)Google Scholar
  11. Ems SC, Morden CW, Dixon CK, Wolfe KH, Depamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733PubMedGoogle Scholar
  12. Fay MF, Chase MW (1996) Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon 45:441–451Google Scholar
  13. Fuse S, Tamura MN (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol 2:415–427CrossRefGoogle Scholar
  14. Gaut BS, Muse SV, Clark WD, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35:292–303Google Scholar
  15. Goloboff PA (1991) Homoplasy and the choice among cladograms. Cladistics 7:215–232Google Scholar
  16. Graham SW, Kohn JR, Morton BR, Eckenwalder JE, Barrett SC (1998) Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. Syst Biol 47:545–567CrossRefPubMedGoogle Scholar
  17. Hayashi K, Yoshida S, Kato H, Utech FH, Whigham DF, Kawano S (1998) Molecular systematics of the genus Uvularia and selected Liliales based upon matK and rbcL gene sequences data. Plant Species Biol 13:129–146Google Scholar
  18. Ito M, Kawamoto A, Kita Y, Yukawa T, Kurita S (1999) Phylogenetic relationships of Amaryllidaceae based on matK sequence data. J Plant Res 112:207–216Google Scholar
  19. Johnson LA, Soltis DE (1995) Phylogenetic inferences in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175Google Scholar
  20. Katayama H, Ogihara Y (1996) Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29:572–581CrossRefPubMedGoogle Scholar
  21. Kato H, Terauchi R, Utech FH, Kawano S (1995) Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL sequence data. Mol Phylogenet Evol 4:184–193CrossRefPubMedGoogle Scholar
  22. Kawahara T, Murakami N, Setoguchi H, Tsuyama Y (1995) Procedures of plant DNA extraction for phylogenetic analysis. Proc Jpn Soc Plant Taxon 11:13–32Google Scholar
  23. Kazempour Osaloo S, Kawano S (1999) Molecular systematics of Trilliaceae. II. Phylogenetic analyses of Trillium and its allies using sequences of rbcL and matK genes of cpDNA and internal transcribed spacers of 18S–26S nrDNA. Plant Species Biol 14:75–94CrossRefGoogle Scholar
  24. Kazempour Osaloo S, Utech FH, Ohara M, Kawano S (1999) Molecular systematics of Trilliaceae. I. Phylogenetic analyses of Trillium using matK gene sequences. J Plant Res 112:35–49Google Scholar
  25. Liston A, Kadereit JW (1995) Chloroplast DNA evidence for introgression and long distance dispersal in the desert annual Senecio flavus (Asteraceae). Plant Syst Evol 197:33–41Google Scholar
  26. Maddison WP, Maddison DR (1992) MacClade. Analysis of phylogeny and character evolution, version 3.02. Sinauer, SunderlandGoogle Scholar
  27. Nadot S, Bittar G, Carter L, Lacroix R, Lejeune B (1995) A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. Mol Phylogenet Evol 4:257–282CrossRefPubMedGoogle Scholar
  28. Ooi K, Endo Y, Yokoyama J, Murakami N (1995) Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. J Jpn Bot 70:328–331Google Scholar
  29. Piques MC, Lino-Neto T, Palme K, Pais MSS, Tavares RM (1998) DNA sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit from Zantedeschia aethiopica (L.) Spreng. (Accession no. AF065474) (PGR98-197). Plant Physiol 118:1534Google Scholar
  30. Qiu Y-L, Chase MW, Les DH, Parks CR (1993) Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann Mo Bot Gard 80:587–606Google Scholar
  31. Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407CrossRefPubMedGoogle Scholar
  32. Rudall PJ, Furness CA, Chase MW, Fay MF (1997) Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Can J Bot 75:408–430Google Scholar
  33. Rudall PJ, Stevenson DW, Linder HP (1999) Structure and systematics of Hanguana, a monocotyledon of uncertain affinity. Aust Syst Bot 12:311– 330Google Scholar
  34. Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, Bruijn AY de, Sullivan S, Qiu Y-L (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362CrossRefPubMedGoogle Scholar
  35. Seberg O, Linde-Laursen I (1996) Eremium, a new genus of the Triticeae (Poaceae) from Argentina. Syst Bot 21:3–15Google Scholar
  36. Shinwari ZK, Kato H, Terauchi R, Kawano S (1994) Phylogenetic relationships among genera in the Liliaceae–Asparagoideae–Polygonatae sensu lato inferred from rbcL gene sequence data. Plant Syst Evol 192:263–277Google Scholar
  37. Smith JF, Kress WJ, Zimmer EA (1993) Phylogenetic analysis of the Zingiberales based on rbcL sequences. Ann Mo Bot Gard 80:620–630Google Scholar
  38. Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw S-M, Gillespie LJ, Kress WJ, Sytsma KJ (1997) Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann Mo Bot Gard 84:1–49Google Scholar
  39. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461CrossRefGoogle Scholar
  40. Steele KP, Vilgalys R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142Google Scholar
  41. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, SunderlandGoogle Scholar
  42. Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  43. Tamura MN, Schwarzbach AE, Kruse S, Reski R (1997) Biosystematic studies on the genus Polygonatum (Convallariaceae). IV. Molecular phylogenetic analysis based on restriction site mapping of the chloroplast gene trnK. Feddes Repert 108:159–168Google Scholar
  44. Terauchi T, Ogihara Y, Tsunewaki K (1987) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. VI. Complete nucleotide sequences of the rbcL genes encoding H- and L-type rubisco large subunits in common wheat and Aegilops crassa 4×. Jpn J Genet 62:375–388Google Scholar
  45. Tillich H-J (1996) Seeds and seedlings in Hanguanaceae and Flagellariaceae (Monocotyledons). Sendtnera 3:187–197Google Scholar
  46. Yamashita J, Tamura MN (2000) Molecular phylogeny of the Convallariaceae (Asparagales). In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 387–400Google Scholar
  47. Yamashita J, Tamura MN (2004) Karyotypes of metaphase chromosomes and molecular phylogeny of tribe Convallarieae sensu lato (Convallariaceae), with some taxonomic consideration. J Plant Res (in press)Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag  2004

Authors and Affiliations

  • Minoru N. Tamura
    • 1
  • Jun Yamashita
    • 1
  • Shizuka Fuse
    • 1
    • 2
  • Masatake Haraguchi
    • 1
  1. 1.Botanical Gardens, Graduate School of ScienceOsaka City UniversityOsaka 576-0004Japan
  2. 2.Museum of Nature and Human ActivitiesHyogoJapan

Personalised recommendations