Advertisement

Journal of Plant Research

, Volume 116, Issue 6, pp 483–505 | Cite as

Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects

  • Achim Hager
JPR Symposium

Abstract

This article will cover historical and recent aspects of reactions and mechanisms involved in the auxin-induced signalling cascade that terminates in the dramatic elongation growth of cells and plant organs. Massive evidence has accumulated that the final target of auxin action is the plasma membrane H+-ATPase, which excretes H+ ions into the cell wall compartment and, in an antiport, takes up K+ ions through an inwardly rectifying K+ channel. The auxin-enhanced H+ pumping lowers the cell wall pH, activates pH-sensitive enzymes and proteins within the wall, and initiates cell-wall loosening and extension growth. These processes, induced by auxin or by the "super-auxin" fusicoccin, can be blocked instantly and specifically by a voltage inhibition of the H+-ATPase due to removal of K+ ions or the addition of K+-channel blockers. Vice versa, H+ pumping and growth are immediately switched on by addition of K+ ions. Furthermore, the treatment of segments either with auxin or with fusicoccin (which activates the H+-ATPase irreversibly) or with acid buffers (from outside) causes an identical transformation and degradation pattern of cell wall constituents during cell-wall loosening and growth. These and other results described below are in agreement with the acid-growth theory of elongation growth. However, objections to this theory are also discussed.

Keywords

Acid-growth theory Auxin signalling cascade Cell-wall loosening Elongation growth Fusicoccin  H+-ATPase 

References

  1. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17PubMedGoogle Scholar
  2. Ballio A, Chain EB, De Leo P, Erlanger BF, Mauri M, Rouola A (1964) Fusicoccin: a new wilting toxin produced by Fusicoccum amygdali Del. Nature 203:297Google Scholar
  3. Barkley GM, Leopold AC (1973) Comparative effects of hydrogen ions, carbon dioxide, and auxin on pea stem segment elongation. Plant Physiol 52:76–78Google Scholar
  4. Bates GN, Goldsmith MHM (1983) Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159:231–237Google Scholar
  5. Baunsgaard L, Fuglsang AT, Jahn T, Korthout HAA, deBoer AH, Palmgren MG (1998) The 14-3-3 proteins associate with the plant plasma membrane H+-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13:661–671CrossRefPubMedGoogle Scholar
  6. Becker K, Hedrich R (2002) Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol Biol 49:349–356CrossRefPubMedGoogle Scholar
  7. Bennett AB, Spanswick RM (1983) Optical measurements of ΔpH and Δψ in corn root membrane vesicles: kinetic analysis of Cl-effects on a proton-translocating ATPase. J Membr Biol 71:95–107Google Scholar
  8. Bennett AB, O'Neill SD, Spanswick RM (1984) H+-ATPase activity from storage tissue of Beta vulgaris. Identification and characterization of an anion-sensitive H+-ATPase. Plant Physiol 74:538–544Google Scholar
  9. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann K (1996) Arabidopsis AUX1 gene, a permease-like regulator of root growth. Science 273:948–950Google Scholar
  10. Blatt MR, Slayman CL (1987) Role of "active" potassium transport in the regulation of cytoplasmic pH by non animal cells. Proc Natl Acad Sci USA 84:2737–2741PubMedGoogle Scholar
  11. Blatt MR, Thiel G (1994) K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin. Plant J 5:55–68PubMedGoogle Scholar
  12. Bonner J (1934) The relation of hydrogen ions to the growth rate of the Avena coleoptile. Protoplasma 21:406–423Google Scholar
  13. Boutry M, Michelet B, Goffeau A (1989) Molecular cloning of a family of plant genes encoding a protein homologous to plasma membrane H+-translocating ATPases. Biochem Biophys Res Commun 162:567–574PubMedGoogle Scholar
  14. Bown AW (1985) CO2 and intracellular pH. Plant Cell Environ 8:459–465Google Scholar
  15. Boysen-Jensen P (1913) Über die Leitung des phototropischen Reizes in der Avenakoleoptile. Ber Dtsch Bot Ges 31:559–566Google Scholar
  16. Byrne H, Christou NV, Verna DPS, Maclachlan C (1975) Purification and characterization of two cellulases from auxin-treated pea epicotyls. J Biol Chem 250:1012–1018PubMedGoogle Scholar
  17. Cholodny NG (1924) Über die hormonale Wirkung der Organspitze bei der geotropischen Krümmung. Ber Dtsch Bot Ges 42:356–362Google Scholar
  18. Cholodny NG (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentralbl 47:604–626Google Scholar
  19. Churchill KA, Sze H (1983) Anion-sensitive, H+-pumping ATPase in membrane vesicles from oat roots. Plant Physiol 71:610–617Google Scholar
  20. Claussen M, Lüthen H, Blatt M, Böttger M (1997) Auxin-induced growth and its linkage to potassium channels. Planta 201:227–234Google Scholar
  21. Cleland R (1971) Cell wall extension. Annu Rev Plant Physiol 22:197–222CrossRefGoogle Scholar
  22. Cleland RE (1973) Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proc Natl Acad Sci USA 70:3092–3093Google Scholar
  23. Cleland RE (1976a) Kinetics of hormone-induced H+-excretion. Plant Physiol 58:210–213Google Scholar
  24. Cleland RE (1976b) Fusicoccin-induced growth and hydrogen ion excretion of Avena coleoptiles: relation to auxin responses. Planta 128:201–206Google Scholar
  25. Cleland RE, Prins HBA, Harper JR, Higinbotham W (1977) Rapid hormone-induced hyperpolarization of the oat coleoptile transmembrane potential. Plant Physiol 59:395–397Google Scholar
  26. Cline MG, Edgerton M, Rehm MM (1974) Accelerated-endogenous growth in Avena coleoptile segments. Planta 120:213–214Google Scholar
  27. Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338CrossRefPubMedGoogle Scholar
  28. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130PubMedGoogle Scholar
  29. Cosgrove DJ (1993) How do plant cell wall extend? Plant Physiol 102:1–6Google Scholar
  30. Cosgrove DJ (2000) Expansive growth of plant cell wall. Plant Physiol Biochem 38:109–124CrossRefPubMedGoogle Scholar
  31. Darwin C, Darwin F (1881) The power of movement in plants. Appleton-Century, New YorkGoogle Scholar
  32. Davidson AL (2002) Not just another ABC transporter. Science 296:1036–1040Google Scholar
  33. DeVries H (1874) Über die Dehnbarkeit wachsender Sprosse. Arbeiten Bot Inst Würzburg 1:59–545Google Scholar
  34. Dolk HE, Thimann KV (1932) Studies on the growth hormone of plants. Proc Natl Acad Sci USA 18:30Google Scholar
  35. Du Pont FM, Bennett AB, Spanswick RM (1982a) Localisation of a proton-translocating ATPase on sucrose gradients. Plant Physiol 70:1115–1119Google Scholar
  36. Du Pont FM, Giorgi DL, Spanswick RM (1982b) Characterization of a proton-translocating ATPase in microsomal vesicles from corn roots. Plant Physiol 70:1694–1699Google Scholar
  37. Etherton B (1970) Effect of indole-3-acetic acid on membrane potentials of oat coleoptile cells. Plant Physiol 45:527–528Google Scholar
  38. Evans ML (1985) The action of auxin on plant cell elongation. Crit Rev Plant Sci 2:317–365Google Scholar
  39. Evans ML, Schmitt MR (1975) The nature of spontaneous changes in growth rate in isolated coleoptile segments. Plant Physiol 55:757–762Google Scholar
  40. Evans ML, Ray PM, Reinhold L (1971) Induction of coleoptile elongation by carbon dioxide. Plant Physiol 47:335–341Google Scholar
  41. Ewing NN, Bennett AB (1994) Assessment of a number and expression of P-type H+-ATPase genes in tomato. Plant Physiol 106:547–557PubMedGoogle Scholar
  42. Felle H (1989) pH as a second messenger in plants. In: Boss WF, Morre DJ (eds) Second messengers in plant growth and development. Liss, New York, pp 145–166Google Scholar
  43. Frachisse JM, Johannes E, Felle H (1988) The use of weak acids as physiological tools: a study of the effectsof fatty acids on intracellular pH and electrical plasmalemma properties of Ricia fluitans rhizoid cells. Biochim Biophys Acta 938:199–210CrossRefGoogle Scholar
  44. Frias I, Caldeira MT, Perez-Castineira JR, Navarro-Avino JP, Culianzez-Macia Fa, Kuppinger O, Stransky H, Pages M, Hager A, Serrano R (1996) A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8:1533–1544PubMedGoogle Scholar
  45. Friml J, Palme K (2002) Polar auxin transport—old questions and new concepts? Plant Mol Biol 49:237–284Google Scholar
  46. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809Google Scholar
  47. Fry SC (1989) Cellulases, hemicellulases and auxin-stimulated growth: a possible relationship. Physiol Plant 75:532–536Google Scholar
  48. Fry SC, Smith RC, Renwick KF, Martin DJ, HodgeSK, Matthews KJ (1992) Xyloglucan endotransglucosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828Google Scholar
  49. Fuglsang AT, Visconti S, Dumm K, Jahn T, Stemballe A, Mattei B, Jensen ON, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H+-ATPase AMA2 involves the three C-terminal residues Thyr946-Thr-Val and requires phosphorylation of Thr949. J Biol Chem 274:36774–36780PubMedGoogle Scholar
  50. Fullone MR, Visconti S, Marra M, Fogliano V, Aducci P (1998) Fusicoccin effect on the in vitro interaction between plant 14-3-3 proteins and plasma membrane H+-ATPase. J Biol Chem 273:7698–7702CrossRefPubMedGoogle Scholar
  51. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yepremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedGoogle Scholar
  52. Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428Google Scholar
  53. Greenwood MS, Shaw S, Hillman JR, Richie A, Wilkins MB (1972) Identification of auxin from Zea coleoptile tips by mass spectrometry. Planta 108:179–183Google Scholar
  54. Guern J, Mathieu Y, Péan M, Pasquier C, Beloeil JC, Lallemand JY (1986) Cytoplasmic pH regulation in Acer Pseudoplatanus cells. I. A31P NMR description of acid-load effect. Plant Physiol 82:840–845Google Scholar
  55. Haagen-Smit AJ, Dandliker WB, Wittwer SH, Murneek AE (1946) Isolation of 3-indolacetic acid from immature corn kernels. Am J Bot 33:118–120Google Scholar
  56. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promotors and regulatory factors. Plant Mol Biol 49:373–385CrossRefPubMedGoogle Scholar
  57. Hager A (1955) Chloroplasten-Farbstoffe, ihre papierchromatographische Trennung und ihre Veränderungen durch Außenfaktoren. Z Naturforsch 10B:310–312Google Scholar
  58. Hager A (1962) Untersuchungen über einen durch H+-Ionen induzierbaren Zellstreckungsmechanismus (Analysis of a cell elongation mechanism induced by H+ ions). Habilitationsschrift, Faculty of Natural Sciences, University of Munich, pp 1–54Google Scholar
  59. Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthopyhll-Umwandlungen und Hill-Reaktion. (Correlations between light-induced xanthophyll transformations and Hill-reaction). Ber Dtsch Bot Ges 79:94–107Google Scholar
  60. Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. (Light-dependent decrease of the pH value in a chloroplast compartment causing the enzymatic interconversion of violaxanthin to zeaxanthin; relations to photophosphorylation). Planta 89:224–243Google Scholar
  61. Hager A (1980a) The reversible, light-induced conversions of xanthophylls in the chloroplast. In: Czygan FD (ed) Pigments in plants, 2nd edn. Fischer, Stuttgart, pp 57–79Google Scholar
  62. Hager A (1980b) Avena coleoptile segments: hyperelongation growth after anaerobic treatment. Z Naturforsch 35C:794–804Google Scholar
  63. Hager A (1986) Citation classic commentary to "Hager A, Menzel H, Krauss A (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum (Experiments and hypothesis concerning the primary action of auxin in elongation growth)". Planta 100:47–75. Also in Current Contents (Life Sciences) (1984) 27(10): 12 and in J. Barrett (ed) Contemporary classics in the life sciences, vol I. Cell biology (1986). ISI, Philadelphia, p 285Google Scholar
  64. Hager A (1989) Chloroplast pigment chromatography and xanthophyll cycle. Citation Classic commentary. Current Contents (Life Sciences) 32(10): 15Google Scholar
  65. Hager A, Biber W (1984) Functional and regulatory properties of H+-pumps at the tonoplast and plasma membranes of Zea mays coleoptiles. Z Naturforsch 39C:927–937Google Scholar
  66. Hager A, Helmle M (1981) Properties of an ATP-fueled, Cl--dependent proton pump localized in membranes of microsomal vesicles from maize coleoptiles. Z Naturforsch 36C:997–1008Google Scholar
  67. Hager A, Meyer-Bertenrath TH (1966) Die Isolierung und quantitative Bestimmung der Carotinoide und Chlorophylle von Blättern, Algen und isolierten Chloroplasten mit Hilfe dünnschichtchromatographischer Methoden (Extraction and quantitative determination of carotenoids and chlorophylls of leaves, algae and isolated chloroplasts by thin-layer chromatographic techniques. Planta 69:198–217Google Scholar
  68. Hager A, Moser I (1985) Acetic acid esters and permeable weak acids induce active proton extrusion and extension growth of coleoptile segments by lowering the cytoplasmic pH. Planta 163:391–400Google Scholar
  69. Hager A, Menzel H, Krauss A (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum (Experiments and hypothesis concerning the primary action of auxin in elongation growth). Planta 100:47–75Google Scholar
  70. Hager A, Frenzel R, Laible D (1980) ATP-dependent proton transport into vesicles of microsomal membranes of Zea mays coleoptiles. Z Naturforsch 35C:783–793Google Scholar
  71. Hager A, Berthold W, Biber W, Edel HG, Lanz Ch, Schiebel G (1986) Primary and secondary energized ion translocating systems on membranes of plant cells. Ber Dtsch Bot Ges 99:281–295Google Scholar
  72. Hager A, Brich M, Debus G, Edel HG, Priester TH (1989) Membrane metabolism and growth. Phospholiphases, protein kinases and exocytotic processes in coleoptiles of Zea mays. In: M. Tazawa et al. (eds) Plant water relations and growth under stress. Proceedings of the Yamada Conference XXII, Osaka, Japan. Yamada Science Foundation, Tokyo, pp 275–282Google Scholar
  73. Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma membrane H+-ATPase. Planta 185:527–537Google Scholar
  74. Haschke HP, Lüttge U (1973) β-Indolylessigsäure (IES)-abhängiger K+-H+-Austauschmechanismus und Streckungswachstum bei Avena-Koleoptilen. Z Naturforsch 28C:555–558Google Scholar
  75. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168Google Scholar
  76. Hayashi T, Whon YS, Maclachlan G (1984) Pea xyloglucan and cellulose. II. Hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol 75:605–610Google Scholar
  77. Hedrich R, Dietrich P (1996) Plant K+ channels: similarity and diversity. Bot Acta 109:94–101Google Scholar
  78. Hertel R (1983) The mechanism of auxin transport as a model for auxin action. Z Pflanzenphysiol 112:53–67Google Scholar
  79. Hertel R, Thomson KS, Russo V (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340Google Scholar
  80. Heyn ANJ (1931) Der Mechanismus der Zellstreckung. Rec Trav Bot Neerl 28:113–244Google Scholar
  81. Hodges TK, Leonard RT, Bracker CE, Keenan TW (1972) Purification of an ion-stimulated ATPase from plant roots: association with plasma membranes. Proc Natl Acad Sci USA 69:3307–3311Google Scholar
  82. Hoson T (1998) Apoplast as the site of response to environmental signals. J Plant Res 111:167–177PubMedGoogle Scholar
  83. Hoson T, Masuda Y (1991) Inhibition of auxin-induced elongation and xyloglucan breakdown in azuki bean epicotyl segments by fucose-binding lectins. Physiol Plant 82:41–47CrossRefGoogle Scholar
  84. Hoson T, Masuda Y, Sone Y, Misaki A (1991) Xyloglucase antibodies inhibit auxin-induced elongation and cell wall loosening of azuki bean epicotyls but not of oat coleoptiles. Plant Physiol 96:551–557Google Scholar
  85. Hoson T, Tabuchi A, Masuda Y (1995) Mechanism of xyloglucan breakdown in cell walls of azuki bean epicotyls. J Plant Physiol 147:219–224Google Scholar
  86. Ikoma S, Okamoto H (1988) The quantitative and chronological relationship between IAA-induced H+ pump activation and elongation growth studied by means of xylem perfusion. Plant Cell Physiol 29:261–267Google Scholar
  87. Jacobs M, Ray PM (1976) Rapid auxin-induced decrease in free space pH and its relationship to auxin-induced growth in maize and pea. Plant Physiol 58:203–209Google Scholar
  88. Jahn T, Johansson F, Lüthen H, Volkmann D, Larsson C (1996) Reinvestigation of auxin and fusicoccin stimulation of the plasma membrane H+-ATPase activity. Planta 199:359–365Google Scholar
  89. Jahn T, Fuglsang AT, Olsson A, Bruntrup IM, Collinge DB, Volkman D, Sommarin M, Palmgren MG, Larsson C (1997) The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell 9:1805–1814PubMedGoogle Scholar
  90. Kaku T, Tabuchi A, Wakabayashi K, Kamisaka S, Hoson T (2002) Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls. Plant Cell Physiol 43:21–26PubMedGoogle Scholar
  91. Katou K, Ichino K (1982) Effects of carbon dioxide on the spatially separate electrogenic ion pumps and the growth rate in the hypocotyl of Vigna sesquipedalis. Planta 155:486–492Google Scholar
  92. Katou K, Okamoto H (1970) Distribution of electric potential and ion transport in the hypocotyl of Vigna sesquipedalis. I. Distribution of overall ion concentration and the role of hydrogen ion in generation of potential difference. Plant Cell Physiol 11:385–402Google Scholar
  93. Kerkeb L, Venema K, Donaire JP, Rodríguez-Rosales MP (2002) Enhanced H+/ATP coupling ratio of H+-ATPase and increased14-3-3 protein content in plasma membrane of tomato cell upon osmotic shock. Physiol Plant 116:37–41CrossRefPubMedGoogle Scholar
  94. Kim YS, Min JK, Kim D, Jung J (2001) A soluble auxin binding protein, ABP57: purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in auxin effect on plant plasma membrane H+-ATPase. J Biol Chem 276:10730–10736PubMedGoogle Scholar
  95. Kinoshita T, Shimazaki K (2001) Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin. Plant Cell Physiol 42:424–432CrossRefPubMedGoogle Scholar
  96. Kögl F, Haagen-Smit AJ (1931) Über die Chemie des Wuchsstoffs. Proc Kon Akad Wetensch Amsterdam 34:1411–1416Google Scholar
  97. Kögl F, Haagen-Smit AJ, Erxleben H (1933) Über ein Phytohormon der Zellstreckung. Reindarstellung des Auxins aus menschlichem Harn. IV. Mitteilung. Z Physiol Chem 220:137–161Google Scholar
  98. Kögl F, Haagen-Smit AJ, Erxleben H (1934) Über ein neues Auxin ("Heteroauxin") aus Harn. XI. Mitteilung. Z Physiol Chem 228:90–103Google Scholar
  99. Korthout HAAJ, deBoer AH (1994) A fusicoccin binding protein belongs to the family of 14-3-3-brain protein homologs. Plant Cell 6:1681–1692CrossRefPubMedGoogle Scholar
  100. Kotake T, Nakagawa N, Takeda K, Sakurai N (2000) Auxin-induced elongation growth and expressions of cell wall-bound exo-and endo-β-glucanases in barley coleoptiles. Plant Cell Physiol 41:1272–1278PubMedGoogle Scholar
  101. Kurkdjian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40:271–303Google Scholar
  102. Kurkdjian A, Leguay JJ, Guern J (1978) Measurement of intracellular pH and aspects of its control in higher plant cells cultivated in liquid medium. Respir Physiol 33:75–89Google Scholar
  103. Kutschera U (1990) Cell-wall synthesis and elongation growth in hypocotyls of Helianthus annuus L. Planta 181:316–323Google Scholar
  104. Kutschera U (1994) The current status of the acid-growth hypothesis. New Phytol 126:549–569Google Scholar
  105. Kutschera U, Schopfer P (1985) Evidence against the acid growth theory of auxin action. Planta 163:483–493Google Scholar
  106. Labawitch JM, Ray PM (1974) Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol 53:669–673Google Scholar
  107. Lew RR, Spanswick RM (1985) Characterization of anion effects on the nitrate-sensitive ATP-dependent proton pumping activity of soybean (Glycine max L.) seedling root microsomes. Plant Physiol 77:352–357Google Scholar
  108. Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854–864CrossRefPubMedGoogle Scholar
  109. Löbler M, Klämbt D (1985a) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem 260:9848–9853PubMedGoogle Scholar
  110. Löbler M, Klämbt D (1985b) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). II. Localization of a putative auxin receptor. J Biol Chem 260:9854–9859PubMedGoogle Scholar
  111. Lorences EP, Zarra J (1987) Auxin-induced growth in hypocotyl segments of Pinus pinaster Aiton—changes in molecular weight distribution of hemicellulosic polysaccharides. J Exp Bot 38:960–967Google Scholar
  112. Lüthen H, Bigdon M, Böttger M (1990) Reexamination of acid growth theory of auxin action. Plant Physiol 93:931–939Google Scholar
  113. Lüthen H, Claussen M, Böttger M (1999) Growth: progress in auxin research. In: Progress in Botany, vol 60. Springer, Berlin Heidelberg New York, pp 315–340Google Scholar
  114. Lüttge U, Higinbothan N, Pallaghy CK (1972) Electrochemical evidence of specific action of indole acetic acid on membranes of Mnium leaves. Z Naturforsch 27B:1239–1242Google Scholar
  115. Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, Sandberg G (2002) AUX 1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in Arabidopsis seedlings. Plant Cell 14:589–597CrossRefPubMedGoogle Scholar
  116. Marra M, Fullone MR, Fogliano V, Pen J, Mattei M, Masi S, Aducci P (1994) The 30-kilodalton protein present in purified fusicoccin receptor preparation is a 14-3-3-like protein. Plant Physiol 106:1497–1501CrossRefPubMedGoogle Scholar
  117. Marrè E (1979) Fusicoccin: a tool in plant physiology. Annu Rev Plant Physiol 30:273–288CrossRefGoogle Scholar
  118. Marrè E, Lado P, Rasi Caldogno F, Colombo R (1973) Correlation between cell enlargement in pea internode segments and decrease in the pH of the medium of incubation. I. Effects of fusicoccin, natural and synthetic auxins and mannitol. Plant Sci Lett 1:179–184CrossRefGoogle Scholar
  119. Marrè E, Lado P, Ferroni A, Ballarin-Denti A (1974) Transmembrane potential increase induced by auxin, benzyladenine and fusicoccin. Correlation with proton extrusion and cell enlargement. Plant Sci Lett 2:257–265Google Scholar
  120. Matsumoto T, Sakai F, Hayashi T (1997) A xyloglucan-specific endo-1,4-β-glucanase isolated from auxin-treated pea stems. Plant Physiol 114:661–667PubMedGoogle Scholar
  121. McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239PubMedGoogle Scholar
  122. McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension. Proc Natl Acad Sci USA 91:6574–6578Google Scholar
  123. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433Google Scholar
  124. Menzel H (1966) Die pH-abhängige Veränderung mechanischer und chemischer Eigenschaften der Zellwand und ihr Zusammenhang mit der Wuchsstoffwirkung. PhD thesis, University of Munich, Germany, pp 1–57Google Scholar
  125. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148Google Scholar
  126. Mizuno A, Katou K (1992) Effect of cations on IAA-induced proton excretion in the xylem of Vigna unguinculata. Physiol Plant 85:411–416CrossRefGoogle Scholar
  127. Mizuno A, Kojima H, Katou K, Okamoto H (1985) The electrogenic proton pumping from parenchyma symplast into xylem—direct demonstration by xylem perfusion. Plant Cell Environ 8:525–529Google Scholar
  128. Morandini P, Valera M, Albumi C, Bonza MC, Giacometti S, Ravera G, Murgia J, Soave C, DeMichelis MJ (2002) A novel interaction partner for the C-terminus of Arabidopsis thaliana plasma membrane H+-ATPase (AHA1 isoform): site and mechanism of action on H+-ATPase activity differ from those of 14-3-3 proteins. Plant J 31:487–497CrossRefPubMedGoogle Scholar
  129. Morsomme P, de Kerchove d'Exaerde A, De Meester S, Thines D, Goffeau A, Boutry M (1996) Single point mutations in various domains of plant plasma membrane H+-ATPase expressed in S. cerevisiae increase H+-pumping and permit yeast growth at low pH. EMBO J 20:5513–5526Google Scholar
  130. Napier RM, Venis MA (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein. Planta 182:313Google Scholar
  131. Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding protein. Plant Mol Biol 49:339–348CrossRefPubMedGoogle Scholar
  132. Nielsen N (1924) Studies on the transmission of stimuli in the coleoptile of Avena. Dansk Bot Ark 4:Nr. 8Google Scholar
  133. Nishitani K, Masuda Y (1981) Auxin-induced changes in the cell wall structure: Changes in the sugar composition, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall of Vigna angularis. Physiol Plant 52:482–494Google Scholar
  134. Nishitani K, Masuda Y (1982) Acid pH-induced structural changes in cell wall xyloglucans in Vigna agularis epicotyl segments. Plant Sci Lett 28:87–94Google Scholar
  135. Nitsch JP, Nitsch C (1956) Studies on the growth of coleoptile and first internode sections. A new, sensitive, straight-growth test for auxins. Plant Physiol 31:94–111Google Scholar
  136. Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis reprised for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454PubMedGoogle Scholar
  137. Oecking C, Eckerskorn C, Weiler EW (1994) The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett 352:163–166CrossRefPubMedGoogle Scholar
  138. Oecking C, Piotrowski M, HagemeierJ, Hagemann K (1997) Topology and target interaction of the fusicoccin-binding 14-3-3 homologs of Commelina communis. Plant J 12:441–453Google Scholar
  139. Okamoto H, Okamoto A (1994) The pH-dependent yield threshold of cell wall in a glycerinated hollow cylinder (in vitro system) of cowpea hypocotyl. Plant Cell Environ 17:979–983Google Scholar
  140. Okamoto H, Mizuno A, Katou K, Ono Y, Matsumura Y, Kojima H (1984) A new method in growth electro-physiology: pressurized intra-organ perfusion. Plant Cell Environ 7:139–147Google Scholar
  141. Okamoto-Nakazato A, Nakamura T, Okamoto H (2000a) The isolation of wall-bound proteins regulating yield threshold tension in glycerinated hollow cylinders of cowpea hypocotyl. Plant Cell Environ 23:145–154Google Scholar
  142. Okamoto-Nakazato A, Takahashi K, Kido N, Owarabi K, Katou K (2000b) Molecular cloning of yieldins regulating the yield threshold of cow pea cell walls: cDNA cloning and characterization of recombinant yieldin. Plant Cell Environ 23:155–164Google Scholar
  143. Okamoto-Nakazato A, Takahashi K, Katoh-Semba R, Katou K (2001) Distribution of yieldin, a regulatory protein of the cell wall yield threshold in etiolated cowpea seelings. Plant Cell Physiol 42:952–958PubMedGoogle Scholar
  144. Olsson A, Svennelid F, Ek B, Sommarin M, Larsson C (1998) A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol 118:551–555PubMedGoogle Scholar
  145. Paál A (1918) Über phototropische Reizleitung. Jahrb Wiss Bot 58:406–458Google Scholar
  146. Palmgren MG (1998) Proton gradients and plant growth: role of the plasma membrane H+-ATPase. Adv Bot Res 28:1–70Google Scholar
  147. Palmgren MG (2001) Plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845PubMedGoogle Scholar
  148. Palmgren MG, Sommarin M, Serrano R, Larsson C (1991) Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase. J Biol Chem 266:20470–20475PubMedGoogle Scholar
  149. Pardo JM, Serrano R (1989) Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem 264:8557–8562PubMedGoogle Scholar
  150. Philippar K, Fuchs J, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+-channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191PubMedGoogle Scholar
  151. Piotrowski M, Morsomme P, Boutry M, Oecking C (1998) Complementation of the Sacccharomyces cerevisiae plasma membrane H+-ATPase by a plant H+-ATPase generates a highly abundant fusicoccin binding site. J Biol Chem 273:30018–30023CrossRefPubMedGoogle Scholar
  152. Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29:437–460CrossRefGoogle Scholar
  153. Prat R (1978) Gradient of growth, spontaneous changes in growth rate and response to auxin of excised hypocotyl segments of Phaseolus aureus. Plant Physiol 62:75–79Google Scholar
  154. Rayle DL (1973) Auxin-induced hydrogen-ion secretion in Avena coleoptiles and its implications. Planta 114:63–73Google Scholar
  155. Rayle DL, Cleland R (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253Google Scholar
  156. Rayle DL, Cleland R (1977) Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol 11:187–211PubMedGoogle Scholar
  157. Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274PubMedGoogle Scholar
  158. Rayle DL, Nowbar S, Cleland RE (1991) The epidermis of the pea epicotyl is not a unique target tissue for auxin-induced growth. Plant Physiol 97:449–451PubMedGoogle Scholar
  159. Roland JC, Reis D, Mosiniak M, Vian B (1982) Cell wall texture along the growth gradient of mung bean hypocotyl: ordered assembly and dissipative processes. J Cell Sci 56:303–318Google Scholar
  160. Romani G, Marrè MT, Bellando M, Alloatti G, Marrè E (1985) H+ extrusion and potassium uptake associated with potential hyperpolarization in maize and wheat root segments treated with permeant weak acids. Plant Physiol 79:734–739Google Scholar
  161. Rück A, Palme K, Venis MA, Napier RM, Felle HM (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4:41–46CrossRefGoogle Scholar
  162. Ruge U (1937) Untersuchungen über den Einfluß des Heteroauxins auf das Streckungswachstum des Hypokotyls von Helianthus annuus. Z Bot 31:1–56Google Scholar
  163. Sapozhnikov DJ (1969) Transformation of xanthophylls in the chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. Kluwer, Dordrecht, pp 694–700Google Scholar
  164. Sargent JA, Atack AV, Osborne DJ (1974) Auxin and ethylene control of growth in epidermal cells of Pisum sativum: a biphasic response to auxin. Planta 115:213–225Google Scholar
  165. Scherer GFE (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol Biol 49:357–372CrossRefPubMedGoogle Scholar
  166. Scherer GFE, André B (1989) A rapid response to a plant hormone: auxin stimulates phosphilipase A2 in vivo and in vitro. Biochem Biophys Res Commun 163:111–117PubMedGoogle Scholar
  167. Schnepf E, Deichgräber G (1979) Elongation growth of setae of Pellia (Bryophyta): fine structure analysis. Z Pflanzenphysiol 94:283–297Google Scholar
  168. Schopfer P (1993) Determination of auxin-dependent pH changes in coleoptile cell walls by a null-point method. Plant Physiol 103:351–357PubMedGoogle Scholar
  169. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238CrossRefPubMedGoogle Scholar
  170. Serrano R (1984) Purification of the proton pumping ATPase from plant plasma membranes. Biochem Biophys Res Commun 121:735–740PubMedGoogle Scholar
  171. Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40:61–94Google Scholar
  172. Slayman CL, Long WS, Lu CYH (1973) The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol 14:305–338PubMedGoogle Scholar
  173. Söding H (1923) Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet? Ber Dtsch Bot Ges 41:396–400Google Scholar
  174. Söding H (1925) Zur Kenntnis der Wuchshormone in der Haferkoleoptile. Jahrb Wiss Bot 64:587–603Google Scholar
  175. Söding H (1931) Wachstum und Wanddehnbarkeit bei der Haferkoleoptile. Jahrb Wiss Bot 74:127–151Google Scholar
  176. Soga K, Wakabayashi K, Hoson T, Kamisaka S (2000) Flower stalk segments of Arabidopsis thaliana ecotype Columbia lack the capacity to grow in response to exogenously applied auxin. Plant Cell Physiol 41:1327–1333CrossRefPubMedGoogle Scholar
  177. Spanswick RM (1981) Electrogenic ion pumps. Annu Rev Plant Physiol 32:267–289CrossRefGoogle Scholar
  178. Squire GR, Mansfield TA (1972) Studies of the mechanism of action of fusicoccin, the fungal toxin that induces wilting, and its interaction with abscisic acid. Planta 105:71–78Google Scholar
  179. Stark P (1921) Studien über traumatotrope und haptotrope Reizleitungsvorgänge. Jb Wiss Bot 60:67–134Google Scholar
  180. Starrach N, Mayer WE (1986) Unequal distribution of fixed negative charges in isolated cell walls of various tissues in primary leaves of Phaseolus. J Plant Physiol 126:213–222Google Scholar
  181. Starrach N, Mayer WE (1989) Changes of the apoplastic pH and K+ concentration in the Phaseolus pulvinus in situ in relation to rhythmic leaf movements. J Exp Bot 40:865–873Google Scholar
  182. Starrach N, Flach D, Mayer WE (1985) Activity of fixed negative charges of isolated extensor cell walls of the laminar pulvinus of primary leaves of Phaseolus. J Plant Physiol 120:441–455Google Scholar
  183. Steffens B, Feckler C, Palme K, Christian M, Böttger M, Lüthen H (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J 27:591–599PubMedGoogle Scholar
  184. Stout RG, Cleland RE (1982) Evidence for a Cl--stimulated Mg ATPase proton pump in oat root membranes. Plant Physiol 69:798–803Google Scholar
  185. Strugger S (1932) Die Beeinflussung des Wachstums und des Geotropismus durch die Wasserstoffionen. Ber Dtsch Bot Ges 50[Appendix]:77–92Google Scholar
  186. Sussman MR (1994) Molecular analysis of proteins in the plant plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45:211–234Google Scholar
  187. Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sommarin M (1999) Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell 11:2379–2391PubMedGoogle Scholar
  188. Sze H (1980) Nigericin-stimulated ATPase activity in microsomal vesicles of tobacco callus. Proc Natl Acad Sci USA 77:5904–5908Google Scholar
  189. Sze H (1985) H+-translocating ATPases: Advances using membrane vesicles. Annu Rev Plant Physiol 36:175–208Google Scholar
  190. Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689CrossRefPubMedGoogle Scholar
  191. Tabuchi A, Kamisaka S, Hoson T (1997) Purification of xyloglucan hydrolase/endotransferase from cell walls of azuki bean epicotyls. Plant Cell Physiol 38:653–658Google Scholar
  192. Tabuchi A, Mori H, Kamisaka S, Hoson T (2001) A new type of endo-xyloglucan transferase devoted to xyloglucan hydrolysis in the cell wall of azuki bean epicotyls. Plant Cell Physiol 42:154–161PubMedGoogle Scholar
  193. Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657Google Scholar
  194. Takahashi Y, Nagata T (1992) Par B: an auxin-regulated gene encoding glutathione S-transferase. Proc Natl Acad Sci USA 89:56–59PubMedGoogle Scholar
  195. Terry ME, Jones RI (1981) Effect of salt on auxin-induced acidification and growth by pea internode section. Plant Physiol 68:59–64Google Scholar
  196. Thiel G, Blatt MR, Fricker MD, White IR, Millner P (1993) Modulation of K+ channels in Vicia stomatal guard cells by peptide homologues to the auxin-binding proteins C-terminus. Proc Natl Acad Sci USA 90:11493–11497PubMedGoogle Scholar
  197. Tode K, Lüthen H (2001) Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence. J Exp Bot 52:251–255CrossRefPubMedGoogle Scholar
  198. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849PubMedGoogle Scholar
  199. Vara F, Serrano R (1982) Partial purification and properties of the proton-translocating ATPase in plant plasma membrane. J Biol Chem 257:12826–12830PubMedGoogle Scholar
  200. Vesper MJ, Evans ML (1979) Nonhormonal induction of H+-efflux from plant tissues and its correlation with growth. Proc Natl Acad Sci USA 76:6366Google Scholar
  201. Vincken JP, York WS, Beldman G, Voragen AGJ (1997) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 114:9–13CrossRefPubMedGoogle Scholar
  202. Waller F, Furuya M, Nick P (2002) OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol 50:415–425CrossRefPubMedGoogle Scholar
  203. Went FW (1928) Wuchsstoff und Wachstum. Rec Trav Bot Neerl 25:1–116Google Scholar
  204. Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens: two types of protein kinase in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell 8:555–564Google Scholar
  205. Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem 97:168–173Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag  2004

Authors and Affiliations

  • Achim Hager
    • 1
  1. 1.Botanisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations