Journal of Plant Research

, Volume 116, Issue 4, pp 273–279 | Cite as

Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data

  • Norio TanakaEmail author
  • John Kuo
  • Yuji Omori
  • Masahiro Nakaoka
  • Keiko Aioi
Original Article


Phylogenetic analysis of the plastid (chloroplast) DNA matK gene of Zosteraceae species was undertaken. A molecular phylogenetic tree based on matK sequence data showed the monophyly of Heterozostera tasmanica and subgenus Zosterella and did not support the separation of Heterozostera from the genus Zostera. The tree based on matK supported the monophyly of the subgenus Zostera, and showed that Zosteraceae consist of three main groups: Phyllospadix, which is clearly defined by being dioecious; the subgenus Zosterella and Heterozostera; and the subgenus Zostera. Character-state reconstruction of chromosome number and geographic distribution for our molecular phylogenetic tree showed that 2n=12 is a plesiomorphic character for Zostera and Heterozostera, that the chromosome number was doubled or tripled in two lineages, and that the initial speciation of Zostera and Heterozostera occurred in the Northern Hemisphere. The matK tree showed the close affinity of Z. noltii and Z. japonica, which have disjunct distributions. Zostera marina, which is the only widely distributed species in the subgenus Zostera, also occurring in the northern Atlantic, was shown to be embedded within other subgenus Zostera species.


MatK sequences Molecular phylogeny Phytogeography Seagrass Zostera Zosteraceae 



The authors thank Jin Murata for helpful comments on the manuscript, and Koichi Morita, Jun Michimata, Spencer Wood, Seiichi Tamura, Naho Miyamoto and Masako Watanabe for collecting plant materials. Financial support for this study was provided in part by the Salt Science Research Foundation, Japan.


  1. Aioi K (2000) A daybreak in the studies on Japanese Zostera beds (in Japanese with English abstract). Aquabiology 131:516–523Google Scholar
  2. Ascherson P (1868) Vorarbeiten zu einer Ubersicht der phanerogamen Meergewachse. Linnaea 35:152–208Google Scholar
  3. Cook CDK (1990) Aquatic plant book. SPB Academic, AmsterdamGoogle Scholar
  4. Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Dott RH, Batten RL (1981) Evolution of the earth, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  6. Eckardt T (1964) Monocotyledonae. 1. Reihe Helobiae. In: Melchior H (ed) A. Engler's Syllabus der Pflanzenfamilien, 12th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  8. Felsenstein J (1993) Phylogeny inference package (PHYLIP), version 3.5c. University of Washington, SeattleGoogle Scholar
  9. HartogC den (1970) The sea-grasses of the world. North-Holland, AmsterdamGoogle Scholar
  10. Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91:5730–5734PubMedGoogle Scholar
  11. Hodkinson TR, Chase MW, Lledo D, Salamin N, Renvoize SA (2002) Molecular phylogeny of Miscanthus s.l., Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) using DNA sequences from ITS nuclear ribosomal DNA and the plastid trnL-F regions. J Plant Res 115:381–392PubMedGoogle Scholar
  12. Hutchinson J (1959) The families of flowering plants. 2. Monocotyledons, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  13. Johnson LA, Soltis DE (1994) matK sequences and phylogenetic reconstruction in Saxifragaceae s. s. Syst Bot 19:143–156Google Scholar
  14. Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175Google Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedGoogle Scholar
  16. Koriba K, Miki S (1931) On Archeozostera from the Izumi Sandstone (in Japanese). Chikyu (The Globe) 15:165–201Google Scholar
  17. Koriba K, Miki S (1958) Archeozostera, a new genus from upper Cretaceous in Japan. Palaeobotanist 7:107–110Google Scholar
  18. Kuo J (2001) Chromosome number of the Australian Zosteraceae. Plant Syst Evol 226:155–163CrossRefGoogle Scholar
  19. Kuo J, den Hartog C (2001) Seagrass taxonomy and identification key. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 31–58Google Scholar
  20. Kuo J, McComb AJ (1998) Zosteraceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol IV. Springer, Berlin Heidelberg New York, pp 496–502Google Scholar
  21. Kuo J, Seto K, Nasu T, Iuzumi H, Aioi K (1989) Notes on Archaeozostera in relation to the Zosteraceae. Aquat Bot 34:317–328Google Scholar
  22. Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Sheherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156Google Scholar
  23. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae. II. Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463Google Scholar
  24. Maddison WP (1989) Reconstructing character evolution on polytomous cladograms. Cladistics 5:365–377Google Scholar
  25. Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution, version 3.0. Sinauer, Sunderland, Mass.Google Scholar
  26. Miki S (1933) On the sea-grasses in Japan. (I) Zostera and Phyllospadix, with special reference to morphological and ecological characters. Bot Mag (Tokyo) 47:842–862Google Scholar
  27. Omori Y (1992) Geographical variation of the size and spathe and the number of flowers among the four species of the subgenus Zostera (Zosteraceae). Sci Rep Yokosuka City Mus 40:69–74Google Scholar
  28. Omori Y (1993) Seed coat anatomy of subgenus Zostera. Proceedings of international workshop on seagrass biology, Kominato 1993, pp 45–50Google Scholar
  29. Omori Y (1996) Rhizome morphology of the subgenus Zostera (Zosteraceae). Sci Rep Yokosuka City Mus 44:55–62Google Scholar
  30. Penhallow DP (1900) The Pleistocene flora of the Don Valley. Bradford meeting of the British Association for the Advancement of Science, pp 334–339Google Scholar
  31. Phillips RC, Menez EG (1988) Seagrasses.Smithsonian contribution to marine science no. 34. Smithsonian Institution Press, WashingtonGoogle Scholar
  32. Ruckelshaus MH (1996) Estimation of genetic neighborhood parameters from pollen and seed dispersal in the marine angiosperm Zostera marina L. Evolution 50:856–864Google Scholar
  33. Saito N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. Setchell WA (1933) A preliminary survey of the species of Zostera. Proc Natl Acad Sci USA 19:810–817Google Scholar
  35. Stanley SM (1987) Extinction. Scientific American Books, New YorkGoogle Scholar
  36. Swofford DL (2001) PAUP* 4.0: Phylogenetic analysis using parsimony, beta version 8. Sinauer, Sunderland, Mass.Google Scholar
  37. Takhtajan A (1966) Systema et Phylogenia Magnoliophytorum. Nauka, MoscowGoogle Scholar
  38. Tanaka N, Setoguchi H, Murata J (1997) Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J Plant Res 110:329–337Google Scholar
  39. Tomlinson PB (1982) Anatomy of the monocotyledons VII. Helobiae (Alismatidae). Clarendon Press, OxfordGoogle Scholar
  40. Tomlinson PB, Posluszny U (2001) Generic limits in the seagrass family Zosteraceae. Taxon 50:429–437Google Scholar
  41. Uchiyama H (1996) An easy method for investigating molecular systematic relationships in the genus Zostera, Zosteraceae. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Seagrass biology. Proceedings of an international workshop on seagrass biology, Rottnest Island, 25–29 January 1996. Faculty of Science, The University of Western Australia, Perth, pp 79–84Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag  2003

Authors and Affiliations

  • Norio Tanaka
    • 1
    Email author
  • John Kuo
    • 2
  • Yuji Omori
    • 3
  • Masahiro Nakaoka
    • 4
  • Keiko Aioi
    • 5
  1. 1.Tsukuba Botanical GardenNational Science MuseumTsukuba 305-0005Japan
  2. 2.The University of Western AustraliaNedlandsAustralia
  3. 3.Yokosuka City MuseumYokosukaJapan
  4. 4.Chiba UniversityChibaJapan
  5. 5.Aoyama Gakuin Women's Junior CollegeTokyoJapan

Personalised recommendations