Journal of Plant Research

, Volume 116, Issue 2, pp 115–132

Phylogenetic relationships among genera of Massonieae (Hyacinthaceae) inferred from plastid DNA and seed morphology

Original Article

Abstract

The tribe Massonieae Baker (Hyacinthaceae-Hyacinthoideae) presently consists of about 19 genera and 230 species distributed from Africa (south of the Sahara) to Madagascar and India. Based on atpB and trnL-F DNA sequences the tribe is monophyletic only when the genus Pseudoprospero is excluded from Massonieae. In most trnL-F trees, this genus occupies a basal position within subfamily Hyacinthoideae and is sister to the rest of the subfamily. Molecular data suggest that the remaining genera of Massonieae do not share common ancestry with the Eurasian/North-African tribe Hyacintheae Dumort. (Scilla, Hyacinthus and allies), and thus a narrow concept of the essentially Eurasian genus Scilla is supported. Members of well-supported clades in Massonieae usually show similarities in seed characteristics as determined by scanning electron microscopy. Phylogenetic position and seed morphology indicate that Massonia angustifolia and M. zeyheri do not belong to the genus Massonia but fall into a clade together with Daubenya, Androsiphon and Amphisiphon. The genus Whiteheadia appears paraphyletic in the 50% majority rule trnL-F tree and occupies a basal position next to Massonia. However, in the strict consensus tree neither monophyly nor polyphyly can be excluded for this genus. Seed appendages are documented for members of the genera Ledebouria and Lachenalia. Within the genera of Massonieae there is a tendency towards bending of the seed axis. This phenomenon is most obvious within the genus Lachenalia. Delimitation of genera based on seed morphology largely agrees with the results of molecular studies. Correlation between number, size and color of seeds, geographical distribution and phylogenetic position of the genera are discussed.

Keywords

Hyacinthaceae Massonieae Molecular phylogeny Plastid DNA sequences Scanning electron microscopy Seed morphology 

References

  1. Baker JG (1873) Revision of the genera and species of Scilleae and Chlorogaleae. J Linn Soc Bot 13:209–292Google Scholar
  2. Chase MW, Soltis D, Soltis P, Rudall PJ, Fay MF, Hahn WJ, Sullivan S, Joseph J, Molvray M, Kores PJ, Givinish TJ, Sytsma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16Google Scholar
  3. Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of congruence. Cladistics 10:315–320CrossRefGoogle Scholar
  4. Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Constructing a significance test for incongruence. Syst Biol 44:570–572Google Scholar
  5. Fay MF, Rudall PJ, Sullivan S, Stobart KL, de Bruijn AY, Reeves G, Qamaruz-Zaman F, Hong W-P, Joseph J, Hahn WJ, Conran JG, Chase MW (2000) Phylogenetic studies of Asparagales based on four plastid DNA regions. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 360–371Google Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  8. Genetics Computer Group (1994) Program manual for the Wisconsin package, version 8. GCG, Madison, Wis.Google Scholar
  9. Goldblatt P, Manning JC (2000) Cape plants. A conspectus of the Cape flora of South Africa. Strelitzia 9:93–108Google Scholar
  10. Hoot SB, Culham A, Crane PR (1995) The utility of atpB gene sequences in resolving phylogenetic relationships: comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann Mo Bot Gard 82:194–207Google Scholar
  11. Huber H (1969) Die Samenmerkmale und Verwandtschaftsverhältnisse der Liliifloren. Mitt Bot Staatssamml Muenchen 8:219–538Google Scholar
  12. Jessop JP (1970) Studies in the bulbous Liliaceae in South Africa: 1. Scilla, Schizocarphus and Ledebouria. J S Afr Bot 36:233–266Google Scholar
  13. Jessop JP (1975) Studies in the bulbous Liliaceae in South Africa: 5. Seed surface characters and generic groupings. J S Afr Bot 41:67–85Google Scholar
  14. Lewis GJ (1947) Scilla plumbea. Flowering plants of Africa. 26:t. 1006 + 2 ppGoogle Scholar
  15. Lindley J (1830) Scilla plumbea. Lead-coloured Scilla. Edward's botanical register 16:t. 1355 + 2 ppGoogle Scholar
  16. Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution, version 3.0. Sinauer Ass, Sunderland, Mass.Google Scholar
  17. Müller-Doblies U, Müller-Doblies D (1997) A partial revision of the tribe Massonieae (Hyacinthaceae) 1. Survey, including three novelties from Namibia: a new genus, a second species in the monotypic Whiteheadia, and a new combination in Massonia. Feddes Repert 108:49–96Google Scholar
  18. Netolitzky F (1926) Anatomie der Angiospermensamen. Bornträger, BerlinGoogle Scholar
  19. Pfosser M, Speta F (1999) Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann Mo Bot Gard 86:852–875Google Scholar
  20. Pfosser M, Speta F (2001) Bufadienolides and DNA sequences: on lumping and smashing of subfamily Urgineoideae (Hyacinthaceae). Stapfia 75:177–250Google Scholar
  21. Pfosser M, Speta F (2003) From Scilla to Charybdis—is our voyage safer now? Plant Syst Evol (in press)Google Scholar
  22. Savolainen V, Chase MW, Hoot S, Morton CM, Soltis D, Bayer C, Fay MF, de Bruijn AY, Sullivan S, Qiu Y-L (2000) Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362CrossRefPubMedGoogle Scholar
  23. Sernander R (1906) Entwurf einer Monographie der europäischen Myrmekochoren. K Vetensk Acad Handl 41:1–410Google Scholar
  24. Speta F (1972) Entwicklungsgeschichte und Karyologie von Elaiosomen an Samen und Früchten. Naturkd Jahrb Stadt Linz 18:9–65Google Scholar
  25. Speta F (1998a) Systematische Analyse der Gattung Scilla L. (Hyacinthaceae). Phyton (Horn, Austria) 38:1–141Google Scholar
  26. Speta F (1998b) Hyacinthaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, Berlin Heidelberg New York, pp 261–285Google Scholar
  27. Staden J van, Pan M (2001) Genetic diversity of blue-flowered Scilla species as determined by random amplified polymorphic DNA. S Afr J Bot 67:344–348Google Scholar
  28. Stedje B (1998) Phylogenetic relationships and generic delimitation of sub-Saharan Scilla and allied African genera as inferred from morphological and DNA sequence data. Plant Syst Evol 211:1–11Google Scholar
  29. Stedje B (2000) The evolutionary relationships of the genera Drimia, Thuranthos, Bowiea and Schizobasis discussed in the light of morphology and chloroplast DNA sequence data. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 414–417Google Scholar
  30. Swofford DL (2000) PAUP* Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland, Mass.Google Scholar
  31. Werker E (1997) Seed anatomy. Bornträger, BerlinGoogle Scholar
  32. Wetschnig W, Pfosser M, Prenner G (2002) Zur Samenmorphologie der Massonieae Baker 1871 (Hyacinthaceae) im Lichte phylogenetisch interpretierter molekularer Befunde. Stapfia 80:349–379Google Scholar

Copyright information

© The Botanical Society of Japan and Springer-Verlag  2003

Authors and Affiliations

  • M. Pfosser
    • 1
  • W. Wetschnig
    • 2
  • S. Ungar
    • 1
  • G. Prenner
    • 2
  1. 1.Department of Higher Plant Systematics and EvolutionInstitute of BotanyViennaAustria
  2. 2.Institute of BotanyKarl-Franzens-UniversityGrazAustria

Personalised recommendations