Advertisement

The class of cub models: statistical foundations, inferential issues and empirical evidence

  • Domenico Piccolo
  • Rosaria SimoneEmail author
Original Paper

Abstract

This paper discusses a general framework for the analysis of rating and preference data that is rooted on a class of mixtures of discrete random variables. These models have been extensively studied and applied in the last 15 years thanks to a flexible and parsimonious parametrization of data generating process and to prompt interpretation of results. The approach considers the final response as the combination of feeling and uncertainty, by allowing for finer model specifications to include refuge options, response styles and possible overdispersion, also in relation to subjects’ and objects’ covariates. The article establishes the state of art of the research inherent to this paradigm, in terms of methodology, inferential procedures and fitting measures, by emphasizing capabilities and limitations yet establishing new findings. In particular, explicative power and predictive performances of cub statistical models for ordinal data are examined and new topics that could boost and support the modelling of uncertainty in this framework are provided. Possible developments are outlined throughout the whole presentation and final comments conclude the paper.

Keywords

Ordinal data Ratings Data generating process cub models Explicative power Predictability 

Notes

Acknowledgements

Authors thank all the Discussants for their constructive comments. The research has been funded by the ‘cubRegression Model Trees project’ (Project No. 000025_ALTRI_DR_1043_2017-C-CAPPELLI) of the University of Naples Federico II, Italy.

References

  1. Agresti A (1986) Applying $R^2$-type measures to ordered categorical data. Technometrics 28(2):133–138Google Scholar
  2. Agresti A (2010) Analysis of ordinal categorical data, 2nd edn. Wiley, HobokenzbMATHCrossRefGoogle Scholar
  3. Agresti A, Kateri M (2017) Ordinal probability effect measures for group comparisons in multinomial cumulative link models. Biometrics 73:214–219MathSciNetzbMATHCrossRefGoogle Scholar
  4. Agresti A, Lang JB (1993) A proportional odds model with subject-specific effects for repeated ordered categorical responses. Biometrika 80:527–534MathSciNetzbMATHCrossRefGoogle Scholar
  5. Agresti A, Natarajan R (2001) Modeling clustered ordered categorical data: a survey. Int Stat Rev 69:345–371zbMATHCrossRefGoogle Scholar
  6. Agresti A, Tarantola C (2018) Simple ways to interpret effects in modeling ordinal categorical data. Statistica Neerlandica 72(3):210–223MathSciNetCrossRefGoogle Scholar
  7. Allik J (2014) A mixed-binomial model for Likert-type personality measure. Front Psychol 5:1–13CrossRefGoogle Scholar
  8. Anderson JA (1984) Regression and ordered categorical variables. J R Stat Soc Ser B 46:1–30MathSciNetzbMATHGoogle Scholar
  9. Anderson JA, Philips PR (1981) Regression, discrimination and measurement models for ordered categorical variables. J R Stat Soc Ser C 30:22–31MathSciNetzbMATHGoogle Scholar
  10. Andreis F, Ferrari PA (2013) On a copula model with cub margins. Quaderni di Statistica. J Methodol Appl Stat 15:33–51Google Scholar
  11. Andrich (1978) A binomial latent trait model for the study of Likert-style attitude questionnaires. Br J Math Stat Psychol 31:84–98zbMATHCrossRefGoogle Scholar
  12. Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 49:803–821MathSciNetzbMATHCrossRefGoogle Scholar
  13. Bartolucci F, Farcomeni A, Pennoni F (2012) Latent Markov models for longitudinal data. Chapman and Hall/CRC, Boca RatonzbMATHCrossRefGoogle Scholar
  14. Baum CF, Cerulli C, Di Iorio F, Piccolo D, Simone R (2018) The Stata module cub for fitting mixture models for ordinal data. XV Italian Meeting of STATA Users, Bologna, Nov 15–16Google Scholar
  15. Baumgartner H, Steenback JB (2001) Response styles in marketing research: across-national investigation. J Market Res 38:143–156CrossRefGoogle Scholar
  16. Bianconcini S, Mignani S (2008) Latent variable models for longitudinal data in educational studies. In: Proceedings of the XLIV scientific meeting of SIS, CLEUP, Padua, pp 225–232Google Scholar
  17. Birnbaum A (1968) Some latent trait models and their use in inferring an examinee’s ability. In: Lord FM, Novick MR (eds) Statistical theories of mental test scores. Addison-Wesley Publishing, Reading, pp 397–472Google Scholar
  18. Bonnini S, Piccolo D, Salmaso L, Solmi F (2012) Permutation inference for a class of mixture models. Commun Stat Theory Methods 41(16–17):2879–2895MathSciNetzbMATHCrossRefGoogle Scholar
  19. Box GEP, Draper NR (1987) Empirical model building and response surfaces. Wiley, New YorkzbMATHGoogle Scholar
  20. Bradbum NM, Sudman S, Blair E (1979) Improving interview method and questionnaire design. Jossey-Bass Publishers, San FranciscoGoogle Scholar
  21. Breen R, Luijkx R (2010) Mixture models for ordinal data. Sociol Methods Res 39:3–24MathSciNetCrossRefGoogle Scholar
  22. Brentari E, Manisera M, Zuccolotto P (2018) Modelling preceived variety in a choice process with nonlinear cub. In: Capecchi S, Di Iorio F, Simone R (eds.), Proceedings of the international conference ASMOD 2018. Federico II University Press, Naples, pp 69–76. ISBN 978-88-6887-042-3Google Scholar
  23. Brier GW (1950) Verification of forecasts expressed in terms of probability. Month Weather Rev 78(1):1–3CrossRefGoogle Scholar
  24. Cagnone S, Mignani S, Moustaki S (2009) Latent variable models for ordinal data. In: Bini M, Monari P, Piccolo D, Salmaso L (eds) Statistical methods for the evaluation of educational services and quality of products. Springer, Berlin, pp 17–28CrossRefGoogle Scholar
  25. Cagnone S, Moustaki I, Vasdekis V (2009) Latent variable models for multivariate longitudinal ordinal responses. Br J Math Stat Psychol 62(2):401–415MathSciNetzbMATHCrossRefGoogle Scholar
  26. Capecchi S (2015) Modelling the perception of conflict in working conditions. Electron J Appl Stat 8(3):298–311MathSciNetGoogle Scholar
  27. Capecchi S (2017) Measuring indecision in happiness studies. In: Brulé G, Maggino F (eds) Metrics of subjective well-being: limits and improvements. Springer, Dordrecht, pp 133–153CrossRefGoogle Scholar
  28. Capecchi S, Endrizzi I, Gasperi F, Piccolo D (2016) A multi-product approach for detecting subjects’ and objects’ covariates in consumer preferences. Br Food J 118(3):515–526CrossRefGoogle Scholar
  29. Capecchi S, Iannario M (2016) Gini heterogeneity index for detecting uncertainty in ordinal data surveys. Metron 74:223–232MathSciNetzbMATHCrossRefGoogle Scholar
  30. Capecchi S, Iannario M, Simone R (2018) Well-being and relational goods: a model-based approach to detect significant relationships. Soc Indic Res 135(2):729–750CrossRefGoogle Scholar
  31. Capecchi S, Piccolo D (2014) Modelling the latent components of personal happiness. In: Perna C, Sibillo M (eds) Mathematical and statistical methods for actuarial sciences and finance. Springer, Springer, pp 49–52CrossRefGoogle Scholar
  32. Capecchi S, Piccolo D (2016) Investigating the determinants of job satisfaction of Italian graduates: a model-based approach. J Appl Stat 43(1):169–179MathSciNetCrossRefGoogle Scholar
  33. Capecchi S, Piccolo D (2017) Dealing with heterogeneity in ordinal responses. Qual Quant 51:2375–2393CrossRefGoogle Scholar
  34. Capecchi S, Simone R (2019) A proposal for a model-based composite indicators: experience on perceived discrimination in Europe. Soc Indic Res 141(1):95–110CrossRefGoogle Scholar
  35. Cappelli C, Simone R, Di Iorio F (2019) cubremot: a tool for building model-based trees for ordinal responses. Expert Syst Appl 124:39–49CrossRefGoogle Scholar
  36. Carpita M, Ciavolino E, Nitti M (2018) The MIMIC-CUB model for the prediction of the economic public opinions in Europe. Soc Indic Res.  https://doi.org/10.1007/s11205-018-1885-4 CrossRefGoogle Scholar
  37. Colombi R, Giordano S (2016) A class of mixture models for multidimensional ordinal data. Stat Model 16(4):322–340MathSciNetCrossRefGoogle Scholar
  38. Colombi R, Giordano S (2018) A flexible distribution to handle responses styles when modelling rating scale data. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD2018. Federico II University Press, Naples, pp 77–84. ISBN 978-88-6887-042-3Google Scholar
  39. Colombi R, Giordano S, Gottard A, Iannario M (2018) Hierarchical marginal models with latent uncertainty. Scand J Stat.  https://doi.org/10.1111/sjos.12366 CrossRefGoogle Scholar
  40. Corduas M (2008a) Clustering cub models by Kullback-Liebler divergence. In: Proceedings of SCF-CLAFAG Meeting, ESI, Napoli, pp 245–248Google Scholar
  41. Corduas M (2008b) A statistical procedure for clustering ordinal data. Quaderni di Statistica 10:177–189Google Scholar
  42. Corduas M (2011a) A study on University students’ opinions about teaching quality: a model based approach to clustering ordinal data. In: Attanasio M, Capursi V (eds) Statistical Methods for the Evaluation of University Systems. Physica-Verlag, Springer, Berlin, pp 67–78CrossRefGoogle Scholar
  43. Corduas M (2011b) Assessing similarity of rating distributions by Kullback–Liebler divergence. In: Fichet A et al (eds) Classification and multivariate analysis for complex data structures, studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 221–228Google Scholar
  44. Corduas M (2011c) Modelling correlated bivariate ordinal data with cub marginals. Quaderni di Statistica 13:109–119Google Scholar
  45. Corduas M (2015a) Analyzing bivariate ordinal data with cub margins. Stat Model 15(5):411–432Google Scholar
  46. Corduas M (2015b) Modelling correlated consumer preferences. In: Carpita M, Brentari E, Qannari El Mostafa (eds) Advances in latent variables, studies in theoretical and applied statistics. Springer, Berlin, pp 27–36Google Scholar
  47. Corduas M (2015c) Modelling correlated ordinal data by a copula approach. In: Proceedings of the 30th international workshop on statistical modelling, Johannes Kepler Universität , Linz, 2:71–74Google Scholar
  48. Corduas M (2018) Joint modelling of ordinal data: a copula-based method. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD 2018. Federico II University Press, Naples, pp 84–92. ISBN 978-88-6887-042-3Google Scholar
  49. Corduas M, Iannario M, Piccolo D (2009) A class of statistical models for evaluating services and performances. In: Bini M et al (eds) Statistical methods for the evaluation of educational services and quality of products. Contribution to Statistics. Physica-Verlag, Springer, Berlin Heidelberg, pp 99–117CrossRefGoogle Scholar
  50. Cugnata F, Salini S (2017) Comparison of alternative imputation methods for ordinal data. Communications in Statistics. Simul Comput 46(1):315–330zbMATHCrossRefGoogle Scholar
  51. Dayton CM, Macready GB (1988) Concomitant-variable latent-class models. J Am Stat Assoc 83:173–178MathSciNetCrossRefGoogle Scholar
  52. Deldossi L, Paroli R (2015) Bayesian variable selection in a class of mixture models for ordinal data: a comparative study. J Stat Comput Simul 85(10):1926–1944MathSciNetCrossRefGoogle Scholar
  53. D’Elia A (2000a) The mechanism of paired comparisons in rank modelling: statistical issues and critical considerations (in Italian). Quaderni di Statistica 2:173–203Google Scholar
  54. D’Elia A (2000b) A shifted Binomial model for rankings. In: Nunez-Anton V, Ferreira E (eds) Statistical modelling. In: 15th International workshop on statistical modelling. Servicio Editorial de la Universidad del Pais Vasco, pp 412–416Google Scholar
  55. D’Elia A (2003a) Finite sample performance of the E-M algorithm for ranks data modelling. Statistica 63(1):41–51Google Scholar
  56. D’Elia A (2003b) Modelling ranks using the inverse hypergeometric distribution. Stat Model 3(1):65–78Google Scholar
  57. D’Elia A, Piccolo D (2005a) A mixture model for preference data analysis. Comput Stat Data Anal 49:917–934Google Scholar
  58. D’Elia A, Piccolo D (2005b) The moment estimator for the IHG distribution. In: Provasi C (ed) Proceedings of the IV S.Co. 2005 Meeting, CLEUP, Padova, pp 245–250Google Scholar
  59. D’Elia A, Piccolo D (2005c) A model based approach for testing homogeneity among evaluation data. In: Zani S, Cerioli A (eds) Proceedings of the CLADAG-2005 Meeting, Parma, pp 83–86Google Scholar
  60. D’Elia A, Piccolo D (2005d) Uno studio sulla percezione delle emergenze metropolitane: un approccio modellistico. Quaderni di Statistica 7:121–161Google Scholar
  61. D’Elia A, Piccolo D (2006) Analyzing evaluation data: modelling and testing for homogeneity. In: Zani S et al (eds) Data analysis, classification and the forward search, Springer, Berlin, pp 299–307Google Scholar
  62. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Royal Stat Soc Ser B 39:1–38zbMATHGoogle Scholar
  63. Di Iorio F, Iannario M (2012) Residual diagnostics for assessing the fit of cub models. Statistica 72:163–172Google Scholar
  64. Di Iorio F, Piccolo D (2009) Generalized residuals in cub models. Quaderni di Statistica 11:73–88Google Scholar
  65. Di Nardo E, Simone R (2018) A model-based fuzzy analysis of questionnaires. Stat Meth Appl.  https://doi.org/10.1007/s10260-018-00443-9 CrossRefGoogle Scholar
  66. Easterlin RA (1974) Does economic growth improve the human lot? In: David PA, Reder MW (eds) Nations and households in economic growth: essays in honor of Moses Abramovitz. Academic Press Inc, New YorkGoogle Scholar
  67. Easterlin RA, McVey LA, Switek M, Sawangfa O, Zweig JS (2010) The happiness-income paradox revisited. Proc Natl Acad Sci USA 107(52):22463–22468CrossRefGoogle Scholar
  68. Epstein ES (1969) A scoring system for probability forecasts of ranked categories. J Appl Meteorol Climatol 8(6):985–987CrossRefGoogle Scholar
  69. Everitt BS (1988) A finite mixture for the clustering of mixed-mode data. Stat Prob Lett 6(5):305–309MathSciNetCrossRefGoogle Scholar
  70. Fasola S, Sciandra M (2015) New flexible probability distributions for ranking data. In: Morlini I, Minerva T, Vichi M (eds) Advances in statistical models for data analysis. Springer, Berlin, pp 117–124CrossRefGoogle Scholar
  71. Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815MathSciNetzbMATHCrossRefGoogle Scholar
  72. Fin F, Iannario M, Simone R, Piccolo D (2017) The effect of uncertainty on the assessment of individual performance: empirical evidence from professional soccer. Electron J Appl Stat Anal 10(3):677–692Google Scholar
  73. Forcina A, Dardanoni V (2008) Regression models for multivariate ordered responses via the Plackett distribution. J Multivar Anal 99:2472–2478MathSciNetzbMATHCrossRefGoogle Scholar
  74. Fraley C, Raftery AE (1998) How many clusters? Which clustering method?—answers via model-based cluster analysis. Comput J 41:578–588zbMATHCrossRefGoogle Scholar
  75. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631MathSciNetzbMATHCrossRefGoogle Scholar
  76. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New YorkGoogle Scholar
  77. Gini C (1912) Variabilità e mutabilità. Studi economico-giuridici, Facoltà di Giurisprudenza, Università di Cagliari, A, III, parte IIGoogle Scholar
  78. Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477):359–378MathSciNetzbMATHCrossRefGoogle Scholar
  79. Golia S (2015) On the interpretation of the uncertainty parameter in cub models. Electron J Appl Stat Anal 8(3):312–328MathSciNetGoogle Scholar
  80. Gormley IC, Murphy TB (2006) Analysis of Irish third-level college application data. J R Stat Soc Ser A 169:361–379MathSciNetCrossRefGoogle Scholar
  81. Gormley IC, Murphy TB (2008) Exploring voting blocs within the Irish electorate: a mixture modeling approach. J Am Stat Assoc 103(483):1014–1027MathSciNetzbMATHCrossRefGoogle Scholar
  82. Gottard A, Iannario M, Piccolo D (2016) Varying uncertainty in cub models. Adv Data Anal Classif 10(2):225–244MathSciNetCrossRefGoogle Scholar
  83. Granger CJ (1969) Investigating Causal Relationships by Econometrics Models and Cross Spectral Methods. Econometrica 37:425–435Google Scholar
  84. Greene WH, Hensher DA (2003) A latent class model for discrete choice analysis: contrasts with mixed logit. Transp Res Part B 37:681–689CrossRefGoogle Scholar
  85. Grilli L, Iannario M, Piccolo D, Rampichini C (2014) Latent class cub models. Adv Data Anal Classif 8:105–119MathSciNetCrossRefGoogle Scholar
  86. Grilli L, Rampichini C (2012) Multilevel models for ordinal data. In: Kenett RS, Salini S (eds) Modern analysis of customer surveys. Wiley, New York, pp 391–411Google Scholar
  87. Grilli L, Rampichini C, Varriale R (2015) Binomial mixture modelling of university credits. Communications in statistics. Theory Methods 44(22):4866–4879MathSciNetzbMATHCrossRefGoogle Scholar
  88. Grün B, Leisch F (2008) Identifiability of finite mixtures of multinomial logit models with varying and fixed effects. J Classif 25:225–247MathSciNetzbMATHCrossRefGoogle Scholar
  89. Grün B, Leisch F (2009) Dealing with label switching in mixture models under genuine multimodality. J Multivar Anal 100:851–861MathSciNetzbMATHCrossRefGoogle Scholar
  90. Han KT (2012) Fixing the $c$ parameter in the three-parameter logistic model. Pratic Assess Res Eval 17(1):1–24Google Scholar
  91. Hedeker D (2008) Multilevel models for ordinal and nominal variables. In: De Leeuw J, Meijer E (eds) Handbook of multilevel analysis. Springer, New York, pp 237–274CrossRefGoogle Scholar
  92. Hedeker D, Gibbons RD (1994) A random-effects ordinal regression model for multilevel analysis. Biometrics 50:933–944zbMATHCrossRefGoogle Scholar
  93. Hox JJ (2002) Multilevel analysis: techniques and applications. Erlbaum, MahwahzbMATHCrossRefGoogle Scholar
  94. Hox JJ, Roberts JK (2010) Handbook of advanced multilevel analysis. Routledge, New YorkCrossRefGoogle Scholar
  95. Iannario M (2010) On the identifiability of a mixture model for ordinal data. Metron 68:87–94MathSciNetzbMATHCrossRefGoogle Scholar
  96. Iannario M (2012a) Modelling shelter choices in a class of mixture models for ordinal responses. Stat Methods Appl 21:1–22Google Scholar
  97. Iannario M (2012b) cube models for interpreting ordered categorical data with overdispersion. Quaderni di Statistica 14:137–140Google Scholar
  98. Iannario M (2012c) Preliminary estimators for a mixture model of ordinal data. Adv Data Anal Classif 6:163–184Google Scholar
  99. Iannario M (2012d) Hierarchical cub models for ordinal variables. Commun Stat Theory Meth 41(16–17):3110–3125Google Scholar
  100. Iannario M (2014) Modelling uncertainty and overdispersion in ordinal data. Commun Stat Theory Meth 43:771–786MathSciNetzbMATHCrossRefGoogle Scholar
  101. Iannario M (2015) Modelling scale effects and uncertainty in rating surveys. Electron J Appl Stat Anal 8(3):329–345MathSciNetGoogle Scholar
  102. Iannario M, Manisera M, Piccolo D, Zuccolotto P (2018) Ordinal data models for No-opinion responses in attitude surveys. Sociol Methods Res 6(4):1–27Google Scholar
  103. Iannario M, Monti AC, Piccolo D (2016) Robustness issues in cub models. TEST 25(4):731–750MathSciNetzbMATHCrossRefGoogle Scholar
  104. Iannario M, Monti AC, Piccolo D, Ronchetti E (2017) Robust inference for ordinal response models. Electron J Stat 11:3407–3445MathSciNetzbMATHCrossRefGoogle Scholar
  105. Iannario M, Monti AC, Scalera P (2018) Why the number of response categories in rating scales should be large. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD 2018. Federico II University Press, Naples, pp 139–146. ISBN 978-88-6887-042-3Google Scholar
  106. Iannario M, Piccolo D (2012) A framework for modelling ordinal data in rating surveys. In: Proceedings of Joint statistical meetings, section on statistics in marketing, San Diego, California, pp 3308–3322Google Scholar
  107. Iannario M, Piccolo D (2016a) A generalized framework for modelling ordinal data. Stat Methods Appl 25:163–189Google Scholar
  108. Iannario M, Piccolo D (2016b) A comprehensive framework of regression models for ordinal data. Metron 74:233–252Google Scholar
  109. Iannario M, Piccolo D, Simone R (2018) CUB: a class of mixture models for ordinal data. R package version 1(1):3. http://CRAN.R-project.org/package=CUB
  110. Iannario M, Simone R (2017a) Mixture models for rating data: the method of moments via Gröbner basis. J Algebr Stat 8(2):1–28Google Scholar
  111. Iannario M, Simone R (2017b) Zero inflated cub models for the evaluation of leisure time activities. In: CLADAG 2017 Book of Short Papers, pp 1–6. ISBN: 9788899459710Google Scholar
  112. Jasberg K, Sizov S (2017) The Magic barrier revisited: accessing natural limitations of recommender assessment. In: Proceedings of the 11th ACM conference on recommender systems, pp 56–64Google Scholar
  113. Jonung L (1986) Uncertainty about inflationary perceptions and expectations. J Econ Psychol 7:315–325CrossRefGoogle Scholar
  114. Kateri M (2014) Contingency table analysis: methods and implementations using R. Birkäuser, Springer, New YorkzbMATHCrossRefGoogle Scholar
  115. Kenett RS, Salini S (2011) Modern analysis of customer satisfaction surveys: comparison of models and integrated analysis. Appl Stoch Models Bus Ind 27(5):465–475MathSciNetCrossRefGoogle Scholar
  116. Kenett RS, Salini S (eds) (2012) Modern Analysis of Customer Surveys: with Applications using R. Wiley, ChivhesterGoogle Scholar
  117. Kleyner A, Bhagath S, Gasparini M, Robinson J, Bender M (1997) Bayesian techniques to reduce the sample size in automotive electronics attribute testing. Microelectron Reliabil 37(6):879–883CrossRefGoogle Scholar
  118. Köster EP (2009) Diversity in the determinants of food choice: a psychological perspective. Food Qual Prefer 20:70–82CrossRefGoogle Scholar
  119. Krosnick JA (1991) Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl Cogn Psychol 5:213–236CrossRefGoogle Scholar
  120. Krosnick JA (1999) Surveys research. Ann Rev Psychol 50:537–567CrossRefGoogle Scholar
  121. Laakso M, Taagepera R (1989) Effective number of parties: a measure with application to West Europe. Compar Polit Stud 12:3–27CrossRefGoogle Scholar
  122. Lambert D (1992) Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14zbMATHCrossRefGoogle Scholar
  123. Lang JB, Agresti JW (1994) Simultaneously modelling joint and marginal distribution of multivariate categorical responses. J Am Stat Assoc 89:625–632zbMATHCrossRefGoogle Scholar
  124. Lee PM (2012) Bayesian statistics: an introduction, 4th edn. Wiley, New YorkzbMATHGoogle Scholar
  125. Li C, Shepherd BE (2012) A new residual for ordinal outcomes. Biometrika 99(2):473–480MathSciNetzbMATHCrossRefGoogle Scholar
  126. Liu D, Zhang H (2018) Residuals and diagnostics for ordinal regression models: a surrogate approach. J Am Stat Soc 113(522):845–854MathSciNetzbMATHCrossRefGoogle Scholar
  127. Lord FM (1980) Applications of item response theory to practical testing problems. Erlbaum, HillsdaleGoogle Scholar
  128. Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233MathSciNetzbMATHGoogle Scholar
  129. Luchini S, Watson V (2013) Uncertainty and framing in a valuation task. J Econ Psychol 39:204–214CrossRefGoogle Scholar
  130. Magee L (1990) $R^2$ measures based on wald and likelihood ratio joint significance tests. Technometrics 44(3):250–253Google Scholar
  131. Manisera M, Zuccolotto P (2014a) Modeling “don’t know” responses in rating scales. Pattern Recognit Lett 45:226–234Google Scholar
  132. Manisera M, Zuccolotto P (2014b) Modeling rating data with nonlinear cub models. Comput Stat Data Anal 78:100–118Google Scholar
  133. Manisera M, Zuccolotto P (2015) On the identifiability of nonlinear cub models. J Multivar Anal 140:302–316zbMATHCrossRefGoogle Scholar
  134. Marasini D, Quatto P, Ripamonti E (2015) Intuitionistic fuzzy sets in questionnaire analysis. Qual Quant 50:767–790CrossRefGoogle Scholar
  135. McFadden K (1978) Modeling the choice of residential location. In: Karlqvist A et al (ed) Spatial interaction theory and residential location. Amsterdam, North-Holland, pp 75–76Google Scholar
  136. McCullagh P (1980) Regression models for ordinal data (with discussion). J R Stat Soc Ser B 42:109–142zbMATHGoogle Scholar
  137. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, LondonzbMATHCrossRefGoogle Scholar
  138. McLachlan G, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  139. McLachlan G, Peel GJ (2000) Finite mixture models. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  140. Molenberghs G, Lesaffre E (1994) Marginal modelling of correlated ordinal data using multivariate Plackett distribution. J Am Stat Assoc 89:633–644zbMATHCrossRefGoogle Scholar
  141. Molenberghs G, Verbeke G (2007) Likelihood ratio, score, and Wald tests in a constrained parameter space. Am Stat 61:22–27MathSciNetCrossRefGoogle Scholar
  142. Morrison DG (1979) Purchase intentions and purchase behavior. J Market 43:65–74CrossRefGoogle Scholar
  143. Moustaki I, Knott M (2000) Generalized latent trait models. Psychometrika 65:391–411MathSciNetzbMATHCrossRefGoogle Scholar
  144. Mullahy J (1986) Specification and testing of some modified count data models. J Econom 33:341–365MathSciNetCrossRefGoogle Scholar
  145. Murphy AH (1970) The ranked probability score and the probability score: a comparison. Month Weather Rev 98(12):917–924CrossRefGoogle Scholar
  146. Murphy TB, Martin D (2002) Mixtures of distances-based models for ranking data. Comput Stat Data Anal 41:645–655MathSciNetzbMATHCrossRefGoogle Scholar
  147. Muschelli J, Betz J, Varadhan R (2014) Binomial regression in R (chapter 7). In: Rao MB, Rao CR (eds) Computational statistics with R, handbook of statistics, vol 32. Elsevier, Amsterdam, pp 257–308CrossRefGoogle Scholar
  148. Oberski DL, Vermunt JK (2015) The relationship between cub and loglinear models with latent variables. Electron J Appl Stat Anal 8(3):374–383MathSciNetGoogle Scholar
  149. Peryam DR, Pilgrim FJ (1957) Hedonic scale method of measuring food preferences. Food Technol 11:9–14Google Scholar
  150. Piccolo D (2003) On the moments of a mixture of uniform and shifted binomial random variables. Quad Stat 5:85–104Google Scholar
  151. Piccolo D (2006) Observed information matrix for MUB models. Quad Stat 8:33–78Google Scholar
  152. Piccolo D (2015) Inferential issues on cube models with covariates. Communications in statistics. Theory Methods 44:5023–5036MathSciNetzbMATHCrossRefGoogle Scholar
  153. Piccolo D (2018) A new paradigm for rating data models. In: Abbruzzo A, Brentari E, Chiodi M, Piacentino D (eds) Book of short papers SIS 2018. Pearson Publisher, New York, pp 1–12 ISBN-9788891910233Google Scholar
  154. Piccolo D, D’Elia A (2008) A new approach for modelling consumers’ preferences. Food Qual Pref 19:247–259CrossRefGoogle Scholar
  155. Piccolo D, Simone R, Iannario M (2018) Cumulative and cub models for rating data: a comparative analysis. Int Stat Rev.  https://doi.org/10.1111/insr.12282 CrossRefGoogle Scholar
  156. Pinto da Costa JF, Alonso H, Cardoso JS (2008) The unimodal modal for the classification of ordinal data. Neur Netw 21:78–91 Corrigendum in: (2014). Neural Networks 59:73–75zbMATHCrossRefGoogle Scholar
  157. Powers DA, Xie Y (2000) Statistical methods for categorical data analysis. Academic Press, San DiegozbMATHGoogle Scholar
  158. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  159. Raudenbush SW, Bryk AS (2002) Hierarchical linear models. Sage, Newbury ParkGoogle Scholar
  160. Samejima F (1997) Graded response model, handbook of modern item response theory. Springer, Berlin, pp 85–100CrossRefGoogle Scholar
  161. Schutz HG, Cardello AV (2001) A labelled affective magnitude (LAM) scale for assessing food liking/disliking. J Sens Stud 16(2):117–159CrossRefGoogle Scholar
  162. Self SG, Liang KY (2003) Asymptotic properties of maximum likelihood estimators and likelihood ratio test under nonstandard conditions. J Am Stat Assoc 82:605–610MathSciNetzbMATHCrossRefGoogle Scholar
  163. Simon HA (1957) Models of man. Wiley, New YorkGoogle Scholar
  164. Simone R (2018) A test for variable importance. In: Abbruzzo A, Brentari E, Chiodi M, Piacentino D (eds) Book of short papers SIS 2018. Pearson Publisher, New York ISBN-9788891910233Google Scholar
  165. Simone R (2018b) Louis’ identity and fast estimation of mixture models for rating data (under review)Google Scholar
  166. Simone R (2018c) A note on predictability for binomial models (Technical Report)Google Scholar
  167. Simone R, Iannario M (2018) Analysing sport data with clusters of opposite preferences. Stat Model 18(5–6):1–20MathSciNetGoogle Scholar
  168. Simone R, Tutz G (2018) Modelling uncertainty and response styles in ordinal data. Stat Neerlandica 72:224–245MathSciNetCrossRefGoogle Scholar
  169. Simone R, Cappelli C, Di Iorio F (2019a) Modelling marginal ranking distributions: the uncertainty tree (Forthcoming)Google Scholar
  170. Simone R, Tutz G, Iannario M (2019b) Subjective heterogeneity in response attitude for multivariate ordinal outcomes (Forthcoming)Google Scholar
  171. Skellam JG (1948) A probability distribution derived from the Binomial distribution by regarding the probability of success as variable between the sets of trials. J R Stat Soc Ser B 10(2):257–261MathSciNetzbMATHGoogle Scholar
  172. Tamhane A, Ankemanman B, Yang Y (2002) The Beta distribution as a latent response model for ordinal data (I): Estimation of location and dispersion parameters. J Stat Comput Simul 72(6):473–494MathSciNetzbMATHCrossRefGoogle Scholar
  173. Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, New YorkzbMATHGoogle Scholar
  174. Tourangeau R, Rips LJ, Rasinski K (2000) The psychology of survey response. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  175. Train KE (2003) Discrete choice methods with simulations. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  176. Tripathi RC, Gupta RC, Gurland J (1994) Estimation of parameters in Beta Binomial models. Ann Inst Stat Math 46(2):317–331MathSciNetzbMATHCrossRefGoogle Scholar
  177. Tutz G (2012) Regression for categorical data. Cambridge University Press, CambridgezbMATHGoogle Scholar
  178. Tutz G (2018) Uncertainty, dispersion and response styles in ordinal regression. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD 2018, Federico II University Press, Naples, pp 33–41. ISBN 978-88-6887-042-3Google Scholar
  179. Tutz G, Schauberger G (2013) Visualization of categorical response models: from data glyphs to parameter glyphs. J Comput Gr Stat 22(1):156–177MathSciNetCrossRefGoogle Scholar
  180. Tutz G, Schauberger G, Berger M (2018) Response styles in the partial credit model. Appl Psychol Measur 42(6):407–427CrossRefGoogle Scholar
  181. Tutz G, Schneider M, Iannario M, Piccolo D (2017) Mixture models for ordinal responses to account for uncertainty of choice. Adv Data Anal Classif 11(2):281–305MathSciNetCrossRefGoogle Scholar
  182. Ursino M (2014) Ordinal data: a new model with applications. Ph.D. Thesis, XXVI cycle, Polytechnic University of Turin, TurinGoogle Scholar
  183. Ursino M, Gasparini M (2018) A new parsimonious model for ordinal longitudinal data with application to subjective evaluations of a gastrointestinal disease. Stat Methods Med Res 27(5):1376–1393MathSciNetCrossRefGoogle Scholar
  184. van der Linden WJ, Hambleton RK (eds) (1996) Handbook of modern item response theory. Springer, New YorkGoogle Scholar
  185. Vermunt JK, Magidson J (2013) Technical guide for latent gold 5.0: basic, advanced, and sintax. Statistical Innovations, Inc., BelmontGoogle Scholar
  186. von Eye A, Mun E-Y (2012) Log-linear modeling: concepts, interpretation, and application. Wiley, New YorkzbMATHGoogle Scholar
  187. Vu HTV, Zhou S (1997) Generalization of likelihood ratio tests under nonstandard conditions. Ann Stat 25:897–916MathSciNetzbMATHCrossRefGoogle Scholar
  188. Wedel M, DeSarbo WS (1995) A mixture likelihood approach for generalized linear models. J Classif 12:21–55zbMATHCrossRefGoogle Scholar
  189. Zhou H, Lange K (2009) Rating movies and rating the raters who rate them. Am Stat 63:297–307MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Political SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations