On Wald tests for differential item functioning detection

Abstract

Wald-type tests are a common procedure for DIF detection among the IRT-based methods. However, the empirical type I error rate of these tests departs from the significance level. In this paper, two reasons that explain this discrepancy will be discussed and a new procedure will be proposed. The first reason is related to the equating coefficients used to convert the item parameters to a common scale, as they are treated as known constants whereas they are estimated. The second reason is related to the parameterization used to estimate the item parameters, which is different from the usual IRT parameterization. Since the item parameters in the usual IRT parameterization are obtained in a second step, the corresponding covariance matrix is approximated using the delta method. The proposal of this article is to account for the estimation of the equating coefficients treating them as random variables and to use the untransformed (i.e. not reparameterized) item parameters in the computation of the test statistic. A simulation study is presented to compare the performance of this new proposal with the currently used procedure. Results show that the new proposal gives type I error rates closer to the significance level.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bartholomew DJ, Knott M, Moustaki I (2011) Latent variable models and factor analysis: a unified approach. Wiley, West Sussex

    Google Scholar 

  2. Battauz M (2015) equateIRT: an R package for IRT test equating. J. Stat. Softw. 68(7):1–22. https://doi.org/10.18637/jss.v068.i07

    Article  Google Scholar 

  3. Bock RD, Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika 46(4):443–459. https://doi.org/10.1007/BF02293801

    MathSciNet  Article  Google Scholar 

  4. Candell GL, Drasgow F (1988) An iterative procedure for linking metrics and assessing item bias in item response theory. Appl. Psychol. Meas. 12(3):253–260. https://doi.org/10.1177/014662168801200304

    Article  Google Scholar 

  5. Casella G, Berger RL (2002) Statistical inference. Duxbury, Pacific Grove

    Google Scholar 

  6. Gregory AW, Veall MR (1985) Formulating Wald tests of nonlinear restrictions. Econometrica 53(6):1465–1468. https://doi.org/10.2307/1913221

    Article  Google Scholar 

  7. Kim SH, Cohen AS, Kim HO (1994) An investigation of Lord’s procedure for the detection of differential item functioning. Appl. Psychol. Meas. 18(3):217–228. https://doi.org/10.1177/014662169401800303

    Article  Google Scholar 

  8. Kim SH, Cohen AS, Park TH (1995) Detection of differential item functioning in multiple groups. J. Educ. Meas. 32(3):261–276. https://doi.org/10.1111/j.1745-3984.1995.tb00466.x

    Article  Google Scholar 

  9. Kolen M, Brennan R (2014) Test equating, scaling, and linking: methods and practices, 3rd edn. Springer, New York

    Google Scholar 

  10. Lord FM (1980) Applications of item response theory to practical testing problems. Erlbaum, Hillsdale, NJ

    Google Scholar 

  11. Magis D, Béland S, Tuerlinckx F, De Boeck P (2010) A general framework and an R package for the detection of dichotomous differential item functioning. Behav. Res. Methods 42(3):847–862. https://doi.org/10.3758/BRM.42.3.847

    Article  Google Scholar 

  12. Mislevy RJ (1986) Bayes modal estimation in item response models. Psychometrika 51(2):177–195. https://doi.org/10.1007/BF02293979

    MathSciNet  Article  MATH  Google Scholar 

  13. Ogasawara H (2000) Asymptotic standard errors of IRT equating coefficients using moments. Econ. Rev. (Otaru Univ. Commer.) 51(1):1–23

    Google Scholar 

  14. Ogasawara H (2001) Standard errors of item response theory equating/linking by response function methods. Appl. Psychol. Meas. 25(1):53–67. https://doi.org/10.1177/01466216010251004

    MathSciNet  Article  Google Scholar 

  15. Patz RJ, Junker BW (1999) Applications and extensions of MCMC in IRT: multiple item types, missing data, and rated responses. J. Educ. Behav. Stat. 24(4):342–366. https://doi.org/10.3102/10769986024004342

    Article  Google Scholar 

  16. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/, ISBN 3-900051-07-0

  17. Reise SP, Revicki DA (2014) Handbook of item response theory modeling: applications to typical performance assessment. Routledge, New York

    Google Scholar 

  18. Rizopoulos D (2006) ltm: an R package for latent variable modeling and item response theory analyses. J. Stat. Softw. 17(5):1–25. https://doi.org/10.18637/jss.v017.i05

    Article  Google Scholar 

  19. van der Linden W (2016) Handbook of item response theory, volume one: models. Chapman & Hall, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Funding was provided by Universitá degli Studi di Udine (Grant No. PRID 2017). This work was supported by PRID 2017, University of Udine.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michela Battauz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 65 KB)

Appendices

Appendix A: Equating of untransformed item parameters

Equation (12) is obtained from Eqs. (7) and (4) as follows:

$$\begin{aligned} \hat{\beta }_{2jk}^* = D \hat{a}_{jk}^* = \frac{D \hat{a}_{jk}}{\hat{A}_k} = \frac{\hat{\beta }_{2jk}}{\hat{A}_k}. \end{aligned}$$
(A1)

Equations (7), (8) and (5) lead to Eq. (13):

$$\begin{aligned} \hat{\beta }_{1jk}^*= & {} - D \hat{a}_{jk}^* \hat{b}_{jk}^* = - D \frac{\hat{a}_{jk}}{\hat{A}_k} \left( \hat{A}_k \, \hat{b}_{jk} + \hat{B}_k\right) = - D \hat{a}_{jk} \hat{b}_{jk} - D \hat{a}_{jk} \frac{\hat{B}_k}{\hat{A}_k}\nonumber \\= & {} \hat{\beta }_{1jk}-\hat{\beta }_{2jk}\frac{\hat{B}_k}{\hat{A}_k}. \end{aligned}$$
(A2)

Appendix B: Covariance matrix of item parameters

The covariance matrix \(\varvec{\varOmega }_j\) entering in Eq. (15) is a block matrix given by

$$\begin{aligned} \varvec{\varOmega }_j = \begin{pmatrix} \mathsf {COV}\left( \varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j1},\varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j1},\varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j1},\varvec{\beta }_{jK}^*\right) \\ \mathsf {COV}\left( \varvec{\beta }_{j2}^*,\varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j2}^*,\varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j2}^*,\varvec{\beta }_{jK}^*\right) \\ \mathsf {COV}\left( \varvec{\beta }_{j3}^*,\varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j3}^*,\varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j3}^*,\varvec{\beta }_{jK}^*\right) \\ \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \mathsf {COV}\left( \varvec{\beta }_{jK}^*,\varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{jK}^*,\varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{jK}^*,\varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{jK}^*\right) \end{pmatrix}. \end{aligned}$$

Let \(\varvec{\beta }_{(k)}=(\varvec{\beta }_{1k}^\top , \dots ,\varvec{\beta }_{Jk}^\top )^\top \) denote the item parameters estimates in group k, and \(\varvec{\varOmega }_{(k)} = \mathsf {COV}( \varvec{\beta }_{(k)})\) denote the covariance matrix of the item parameter estimates in group k, which is estimated along with the estimation of the item parameters. Using the delta method, it is possible to compute the covariance matrix \(\varvec{\varOmega } = \mathsf {COV}(\varvec{\beta }_{(1)}^\top ,{\varvec{\beta }_{(2)}^*}^\top , \dots ,{\varvec{\beta }_{(K)}^*}^\top )^\top \), from which to extract \(\varvec{\varOmega }_j\):

$$\begin{aligned} \varvec{\varOmega }&= \frac{\partial \left( \varvec{\beta }_{(1)}^\top , {\varvec{\beta }_{(2)}^*}^\top ,\dots ,{\varvec{\beta }_{(K)}^*}^\top \right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(2)}^\top , \dots ,\varvec{\beta }_{(K)}^\top \right) }\mathsf {COV}\left( \left( \varvec{\beta }_{(1)}^\top , \varvec{\beta }_{(2)}^\top ,\dots ,\varvec{\beta }_{(K)}^\top \right) ^\top \right) \frac{\partial \left( \varvec{\beta }_{(1)}^\top , {\varvec{\beta }_{(2)}^*}^\top ,\dots ,{\varvec{\beta }_{(K)}^*}^\top \right) }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(2)}^\top ,\dots , \varvec{\beta }_{(K)}^\top \right) ^\top } \\&= \begin{pmatrix} \frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(1)}^\top } &{}\quad \frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(2)}^\top } &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(K)}^\top } \\ \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top } &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(2)}^\top } &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(K)}^\top } \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top } &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(2)}^\top } &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(K)}^\top } \\ \end{pmatrix} \begin{pmatrix} \varvec{\varOmega }_{(1)} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad \varvec{\varOmega }_{(2)} &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad \varvec{\varOmega }_{(K)} \end{pmatrix} \begin{pmatrix} \frac{\partial \varvec{\beta }_{(1)}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \cdots &{}\quad \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}} \\ \frac{\partial \varvec{\beta }_{(1)}^\top }{\partial \varvec{\beta }_{(2)}} &{}\quad \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(2)}} &{}\quad \cdots &{}\quad \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(2)}} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial \varvec{\beta }_{(1)}^\top }{\partial \varvec{\beta }_{(K)}} &{}\quad \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(K)}} &{}\quad \cdots &{}\quad \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(K)}} \\ \end{pmatrix}\\&= \begin{pmatrix} \varvec{\varOmega }_{(1)} &{}\quad \varvec{\varOmega }_{(1)} \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \cdots &{}\quad \varvec{\varOmega }_{(1)} \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}} \\ \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)} &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}}+ \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(2)}^\top } \varvec{\varOmega }_{(2)} \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(2)}} &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)} &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}}+ \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(K)}^\top } \varvec{\varOmega }_{(K)} \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(K)}} \end{pmatrix}, \end{aligned}$$

since \(\frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(1)}^\top }\) is the identity matrix, \(\frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(k)}^\top }=0\) for all \(k \ne 1\) and \(\frac{\partial \varvec{\beta }_{(k)}^*}{\partial \varvec{\beta }_{(h)}^\top }=0\) for all \(h \ne k\) with \(h\ne 1\). The blocks on the main diagonal of \(\varvec{\varOmega }\) are then

$$\begin{aligned} \mathsf {COV}\left( \varvec{\beta }_{(k)}^*\right) = \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(1)}}+ \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \varvec{\beta }_{(k)}^\top } \varvec{\varOmega }_{(k)} \frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(k)}} , \end{aligned}$$

while the matrices outside the main diagonal are given by

$$\begin{aligned} \mathsf {COV}\left( \varvec{\beta }_{(1)},\varvec{\beta }_{(k)}^*\right) = \varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(1)}}, \end{aligned}$$

and

$$\begin{aligned} \mathsf {COV}\left( \varvec{\beta }_{(h)}^*,\varvec{\beta }_{(k)}^*\right) = \frac{\partial \varvec{\beta }_{(h)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)} \frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(1)}}. \end{aligned}$$

The chain rule can be exploited to find the derivatives

$$\begin{aligned} \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) } = \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \left( \varvec{\beta }_{(k)}^\top , \hat{A}_k, \hat{B}_k\right) } \frac{\partial \left( \varvec{\beta }_{(k)}^\top , \hat{A}_k, \hat{B}_k\right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) }, \end{aligned}$$
(B1)

where

$$\begin{aligned} \frac{\partial \left( \hat{A}_k, \hat{B}_k\right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) } = \frac{\partial \left( \hat{A}_k, \hat{B}_k\right) ^\top }{\partial \left( \mathbf{v}_{(1)}^\top , \mathbf{v}_{(k)}^\top \right) } \frac{\partial \left( \mathbf{v}_{(1)}^\top , \mathbf{v}_{(k)}^\top \right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) }, \end{aligned}$$
(B2)

where \(\mathbf{v}_{(k)}=(\mathbf{v}_{1k}^\top ,\dots , \mathbf{v}_{Jk}^\top )^\top \). The non-zero derivatives entering in (B1) and (B2) are given in the following (derivatives of a variable with respect to itself are not shown):

$$\begin{aligned} \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{\beta }_{1jk}}= & {} 1, \quad \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{\beta }_{2jk}} = -\frac{\hat{B}_k}{\hat{A}_k}, \quad \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{A}_k} = \hat{\beta }_{2jk}\frac{\hat{B}_k}{\hat{A}_k^2}, \\ \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{B}_k}= & {} - \frac{\hat{\beta }_{2jk}}{\hat{A}_k}, \quad \frac{\partial \hat{\beta }_{2jk}^*}{\partial \hat{\beta }_{2jk}} = \frac{1}{\hat{A}_k}, \quad \frac{\partial \hat{\beta }_{2jk}^*}{\partial \hat{A}_k} = -\frac{\hat{\beta }_{2jk}}{\hat{A}_k^2} \\ \frac{\partial \hat{a}_{jk}}{\partial \hat{\beta }_{2jk}}= & {} \frac{1}{D}, \quad \frac{\partial \hat{b}_{jk}}{\partial \hat{\beta }_{1jk}} = -\frac{1}{\hat{\beta }_{2j1}}, \quad \frac{\partial \hat{b}_{jk}}{\partial \hat{\beta }_{2jk}} = \frac{\hat{\beta }_{1jk}}{\hat{\beta }_{2jk}^2}. \end{aligned}$$

The derivatives \(\frac{\partial ( \hat{A}_k, \hat{B}_k)^\top }{\partial (\mathbf{v}_{(1)}^\top ,\mathbf{v}_{(k)}^\top )}\) are given in Ogasawara (2000, 2001).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Battauz, M. On Wald tests for differential item functioning detection. Stat Methods Appl 28, 103–118 (2019). https://doi.org/10.1007/s10260-018-00442-w

Download citation

Keywords

  • Differential item functioning
  • False positive rate
  • Item response theory
  • Lord test
  • Type I error rate
  • Wald test

Mathematics Subject Classification

  • 62 Statistics