Advertisement

Statistical Methods & Applications

, Volume 27, Issue 4, pp 651–660 | Cite as

The power of (extended) monitoring in robust clustering

Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini
  • Alessio Farcomeni
  • Francesco Dotto
Original Paper

Abstract

We complement the work of Cerioli, Riani, Atkinson and Corbellini by discussing monitoring in the context of robust clustering. This implies extending the approach to clustering, and possibly monitoring more than one parameter simultaneously. The cases of trimming and snipping are discussed separately, and special attention is given to recently proposed methods like double clustering, reweighting in robust clustering, and fuzzy regression clustering.

Keywords

Double clustering Fuzzy clustering Multidimensional monitoring Reweighting Snipping Tuning 

References

  1. Alqallaf F, Van Aelst S, Yohai VJ, Zamar RH (2009) Propagation of outliers in multivariate data. Ann Stat 37:311–331MathSciNetCrossRefzbMATHGoogle Scholar
  2. Campello RJ, Hruschka ER (2006) A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst 157:2858–2875MathSciNetCrossRefzbMATHGoogle Scholar
  3. Cerioli A (2010) Multivariate outlier detection with high-breakdown estimators. J Am Stat Assoc 105:147–156MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cerioli A, Farcomeni A, Riani M (2014) Strong consistency and robustness of the forward search estimator of multivariate location and scatter. J Multivar Anal 126:167–183MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cerioli A, Riani M, Atkinson AC, Corbellini A (2018) The power of monitoring: how to make the most of a contaminated multivariate sample. Stat Methods Appl.  https://doi.org/10.1007/s10260-017-0409-8
  6. Dotto F, Farcomeni A, García-Escudero LA, Mayo-Iscar A (2017) A fuzzy approach to robust regression clustering. Adv Data Anal Classif 11:691.  https://doi.org/10.1007/s11634-016-0271-9
  7. Dotto F, Farcomeni A, García-Escudero LA, Mayo-Iscar A (2017) A reweighting approach to robust clustering. Stat Comput.  https://doi.org/10.1007/s11222-017-9742-x
  8. Farcomeni A (2009) Robust double clustering. J Classif 26:77–101CrossRefzbMATHGoogle Scholar
  9. Farcomeni A (2014a) Robust constrained clustering in presence of entry-wise outliers. Technometrics 56:102–111MathSciNetCrossRefGoogle Scholar
  10. Farcomeni A (2014b) Snipping for robust \(k\)-means clustering under component-wise contamination. Stat Comput 24:909–917MathSciNetCrossRefzbMATHGoogle Scholar
  11. Farcomeni A, Greco L (2015) Robust methods for data reduction. Chapman and Hall/CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  12. Farcomeni A, Ventura L (2012) An overview of robust methods in medical research. Stat Methods Med Res 21:111–133MathSciNetCrossRefGoogle Scholar
  13. Flury B (1988) Multivariate statistics: a practical approach. Chapman & Hall, Ltd, LondonCrossRefzbMATHGoogle Scholar
  14. García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2011) Exploring the number of groups in model-based clustering. Stat Comput 21:585–599MathSciNetCrossRefzbMATHGoogle Scholar
  15. García-Escudero LA, Gordaliza A, Mayo-Iscar A, San Martín R (2010) Robust clusterwise linear regression through trimming. Comput Stat Data Anal 54:3057–3069MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Sanità Pubblica e Malattie InfettiveUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Scuola di Economia e Studi AziendaliUniversità degli Studi di Roma TreRomeItaly

Personalised recommendations