Objective Bayesian analysis for the multivariate skew-t model

Abstract

We propose a novel Bayesian analysis of the p-variate skew-t model, providing a new parameterization, a set of non-informative priors and a sampler specifically designed to explore the posterior density of the model parameters. Extensions, such as the multivariate regression model with skewed errors and the stochastic frontiers model, are easily accommodated. A novelty introduced in the paper is given by the extension of the bivariate skew-normal model given in Liseo and Parisi (2013) to a more realistic p-variate skew-t model. We also introduce the R package mvst, which produces a posterior sample for the parameters of a multivariate skew-t model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Azzalini A, with the collaboration of A. Capitanio (2014) The skew-normal and related families. Cambridge University Press, Cambridge

    Google Scholar 

  2. Azzalini A (2015) The R package sn: the skew-normal and skew-\(t\) distributions (version 1.3-0). Università di Padova, Padova

    Google Scholar 

  3. Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J R Stat Soc B 65:367–389

    MathSciNet  Article  MATH  Google Scholar 

  4. Azzalini A, Genton M (2008) Robust likelihood methods based on the skew-t and related distributions. Int Stat Rev 76:106–119

    Article  MATH  Google Scholar 

  5. Azzalini A, Genz A (2016) The R package mnormt: the multivariate normal and \(t\) distributions (version 1.5-4). http://azzalini.stat.unipd.it/SW/Pkg-mnormt

  6. Branco MD, Dey D (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 77:1–15

    MathSciNet  Article  MATH  Google Scholar 

  7. Branco MD, Genton MG, Liseo B (2011) Objective Bayesian analysis of skew-t distributions. Scand J Stat 40(1):63–85

    MathSciNet  Article  MATH  Google Scholar 

  8. Cabral CRB, Lachos VH, Prates MO (2012) Multivariate mixture modeling using skew-normal independent distributions. Comput Stat Data Anal 56(1):126–142

    MathSciNet  Article  MATH  Google Scholar 

  9. Cancho VG, Ortega EMM, Paula GA (2010) On estimation and influence diagnostics for log-Birnbaum–Saunders Student-\(t\) regression models: full Bayesian analysis. J Stat Plan Inference 140(9):2486–2496

    MathSciNet  Article  MATH  Google Scholar 

  10. Cappé O, Guillin A, Marin JM, Robert CP (2004) Population Monte Carlo. J Comput Graph Stat 13:907–929

    MathSciNet  Article  Google Scholar 

  11. Eddelbuettel D, Romain F (2013) RcppGSL: ‘Rcpp’ integration for ‘GNU GSL’ vectors and matrices. http://CRAN.R-project.org/package=RcppGSL

  12. Fernandez C, Steel MFJ (1999) Multivariate Student-\(t\) regression models: pitfalls and inference. Biometrika 86:153–167

    MathSciNet  Article  MATH  Google Scholar 

  13. Fonseca TC, Ferreira MAR, Migon HS (2008) Objective Bayesian analysis for the Student-t regression model. Biometrika 95:325–333

    MathSciNet  Article  MATH  Google Scholar 

  14. Geisser S, Eddy WF (1979) A predictive approach to model selection. J Am Stat Assoc 74:153–160

    MathSciNet  Article  MATH  Google Scholar 

  15. Genton MG (2004) Skew-elliptical distributions and their applications: a Journey beyond normality. In: Genton MG (ed) CRC/Chapman & Hall/CRC, Boca Raton

  16. Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2015) mvtnorm: multivariate normal and t distributions. R package version 1.0-3

  17. Gough B (2009) GNU scientific library reference manual, 3rd edn. Network Theory Ltd

  18. Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series, and products. Academic Press, Inc., Boston, Russian ed. Translation edited and with a preface by Alan Jeffrey

  19. Hansen BE (1994) Autoregressive conditional density estimation. Int Econ Rev 35(3):705–730

    Article  MATH  Google Scholar 

  20. Ho HJ, Lin TI (2010) Robust linear mixed models using the skew \(t\) distribution with application to schizophrenia data. Biom J 52(4):449–469

    MathSciNet  Article  MATH  Google Scholar 

  21. Jones MC, Faddy MJ (2003) A skew extension of the t-distribution, with applications. J R Stat Soc B 65(1):159–174

    MathSciNet  Article  MATH  Google Scholar 

  22. Lachos VH, Ghosh P, Arellano-Valle RB (2010) Likelihood based inference for skew-normal independent linear mixed models. Stat Sin 20(1):303–322

    MathSciNet  MATH  Google Scholar 

  23. Lee SX, McLachlan GJ (2013) EMMIXuskew: an R package for fitting mixtures of multivariate skew \(t\) distributions via the EM algorithm. J Stat Softw 55:1–22

    Google Scholar 

  24. Leisen F, Marin JM, Villa C (2016) Objective Bayesian modelling of insurance risks with the skewed Student-t distribution. arXiv:1607.04796

  25. Li Y, Liu X, Yu J (2015) A Bayesian chi-squared test for hypothesis testing. J Econom 189(1):54–69

    MathSciNet  Article  MATH  Google Scholar 

  26. Liseo B, Parisi A (2013) Bayesian inference for the multivariate skew-normal model: a population Monte Carlo approach. Comput Stat Data Anal 63:125–138

    MathSciNet  Article  Google Scholar 

  27. Marchenko Y, Genton M (2010) A suite of commands for fitting the skew-normal and skew-t models. Stata J 10:507–539 (Cited By 2)

    Google Scholar 

  28. Martin AD, Quinn KM, Park JH (2011) MCMCpack: Markov Chain Monte Carlo in R. J Stat Softw 42:22

    Article  Google Scholar 

  29. Prates MO, Cabral CRB, Lachos VH (2013) mixsmsn: fitting finite mixture of scale mixture of skew-normal distributions. J Stat Softw 54:1–20

    Article  Google Scholar 

  30. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  31. Rachev ST, Hsu JSJ, Bagasheva BS, Fabozzi FJ (2008) Bayesian methods in finance. Wiley, New York

    Google Scholar 

  32. Robert CP (1995) Simulation of truncated normal variables. Stat Comput 5(2):121–125 (June 1995)

    Article  Google Scholar 

  33. Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer Texts in Statistics. Springer, New York

    Google Scholar 

  34. Rosco JF, Jones MC, Pewsey A (2011) Skew t distributions via the sinh-arcsinh transformation. Test 20(3):630–652

    MathSciNet  Article  MATH  Google Scholar 

  35. Rubio FJ, Steel MFJ (2015) Bayesian modelling of skewness and kurtosis with two-piece scale and shape distributions. Electron J Stat 9(2):1884–1912

    MathSciNet  Article  MATH  Google Scholar 

  36. Sartori N (2006) Bias prevention of maximum likelihood estimates for scalar skew normal and skew-t distributions. J Stat Plan Inference 136:4259–4275

    MathSciNet  Article  MATH  Google Scholar 

  37. StataCorp. (2015) Stata Statistical Software: Release 14

  38. Villa C, Rubio FJ (2017) Objective priors for the number of degrees of freedom of a multivariate t distribution and the t-copula. arXiv:1701.05638

  39. Zhang JL (2014) Comparative investigation of three Bayesian p values. Comput Stat Data Anal 79:277–291

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The work of B. Liseo has been supported by Sapienza Università di Roma Grant C26A15M9PC, “Rischi competitivi e organizzazione della didattica presso Sapienza: il caso degli abbandoni e dei fuori corso”. The work of A. Parisi has been supported by the project PRIN 2010–2011, Project Number 2010J3LZEN, Sector: Economics and Statistics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Parisi.

Appendices

Proof of Proposition 2.1

  1. (a)

    From one of the possible definitions of a multivariate ST r.v., it is known that \( U\sim \textit{SN}_p( 0, \alpha , \varOmega , \nu )\); since Y is a simple transformation of U, its distribution is readily obtained.

  2. (b)

    Start from \(f(y,z,v) = f(v) f(z) f(y\mid z, v)\). By assumption, f(z) is a standard Gaussian density, and

    $$\begin{aligned} \left( Y \mid Z=z, V=v\right) = \left( \xi + \omega U \mid Z=z, V=v\right) = {\left\{ \begin{array}{ll} \xi + \omega X v^{-1/2} &{} z \ge 0 \\ \xi - \omega X v^{-1/2} &{} z < 0 \\ \end{array}\right. }. \end{aligned}$$

    Then, by using simple results on conditional Gaussian densities, one gets

    $$\begin{aligned} \left( Y \mid Z=z, V=v\right) \sim \left\{ \begin{array}{ll} N_p\left( \xi + \omega \delta \displaystyle \frac{z}{\sqrt{v}}, \frac{1}{v}\omega (\varOmega - \delta \delta ^\prime ) \omega \right) &{} z \ge 0\\ N_p\left( \xi - \omega \delta \displaystyle \frac{z}{\sqrt{v}}, \frac{1}{v}\omega (\varOmega - \delta \delta ^\prime ) \omega \right) &{} z < 0\\ \end{array} \right. \end{aligned}$$

    Hence the result in (4).

Proposal distributions

We use the full conditional distributions as proposals for the latent variables Z and \(\xi \): each \(Z_i\) has the following full conditional distribution

$$\begin{aligned} \pi (z_i|\cdots ) = \frac{\phi (z^+_i|m_i, v_\theta )}{2(1-\varPhi (z_i|m_i,v_\theta ))} \end{aligned}$$
(10)

where

$$\begin{aligned} v_\theta= & {} (1+\psi 'G^{-1}\psi )^{-1}\\ m_i= & {} v_\theta \sqrt{v_i} (\psi ' G^{-1}(y_i-\xi )) \end{aligned}$$

The variables \(Z_i\) can be drawn as the product of \(Z^+_i\), a normal r.v. with parameters \(m_i\) and \(v_\theta \) truncated in 0 and the sign \(S_i\), uniform on \(\{-1, 1\}\). To generate values \(Z^+\) a rejection sampler has been employed (see Robert 1995).

The parameter \(\xi \) has the following full conditional density:

$$\begin{aligned} (\xi |\cdots ) \sim N_p\left( \displaystyle \frac{1}{\sum _{i=1}^n v_i} \left( \sum _{i=1}^n(v_i y_i) - \psi \sum _{i=1}^n \sqrt{v_i}|z_i|\right) ,\displaystyle \frac{1}{\sum _{i=1}^n v_i}\,G\right) \end{aligned}$$

The parameters \(\psi \) and G have untractable full conditional distributions. To obtain a proposal distribution, they are approximated using only the contribution of the likelihood to the full conditional density. The parameter \(\psi \) has the following full conditional distribution

$$\begin{aligned}&\pi (\psi \mid \cdots ) \propto \prod _{j=1}^p \left[ (G_{jj} + \psi _j^2)^{-1/2}\right] \mathbb {1}_{{\delta }}(\varDelta _{\varSigma })\\&\quad \exp \Bigg \{-\displaystyle \frac{1}{2} \sum _{i=1}^n v_i \left( y_i-\xi -\psi \frac{|z_i|}{\sqrt{v_i}}\right) ' G^{-1} \left( y_i-\xi -\psi \frac{|z_i|}{\sqrt{v_i}}\right) \Bigg \}, \end{aligned}$$

where \(\mathbb {1}_{x}(\cdot )\) denotes the indicator function. By ignoring the first two factors, we obtain the following proposal distribution

$$\begin{aligned} q(\psi ) = \phi _p \left( \psi \, \Big | \frac{1}{\sum _{i=1}^n z_i^2}\sum _{i=1}^n |z_i|\sqrt{v_i}(y_i-\xi ),\frac{1}{\sum _{i=1}^n z_i^2} G\right) \end{aligned}$$

The proposal distribution has a positive density on \(\mathbb R^p\), while the full conditional is bounded on \(\varDelta _\varSigma \). This feature improves the ability of the sampler to explore the parameter space; moreover, particles which don’t respect the constraint (7) will be automatically discarded, as they have null prior (and posterior) probability density, hence a null importance weight.

The parameter G has the following full conditional density

$$\begin{aligned} \pi (G|\cdots ) \propto \pi (\varSigma )|J| |G|^{-n/2}\exp \left\{ -\frac{1}{2} {\text {tr}}(G^{-1}\varXi )\right\} \end{aligned}$$

where

$$\begin{aligned} \varXi = \sum _{i=1}^n v_i \left( y_i-\xi -\psi \frac{|z_i|}{\sqrt{v_i}}\right) \left( y_i-\xi -\psi \frac{|z_i|}{\sqrt{v_i}}\right) '. \end{aligned}$$

Ignoring the prior term we obtain

$$\begin{aligned} q(G) = \textit{IW}(n-p-1, \varXi ). \end{aligned}$$

Details about the rejection sampler

For a generic latent variable \(V_i\), the Kullback–Leibler divergence \(\textit{KL}(f||\pi _v)\) is given by

$$\begin{aligned} \textit{KL}(f||\pi _v) = \int _{\mathbb R^+} f(v_i)\log \left( \frac{k_v\beta _v^{\alpha _v}}{2\varGamma (\alpha _v)} v_i^{\alpha _v/2-C} \exp \{A_i v_i + (B_i-\beta _v)\sqrt{v_i}\}\right) dv_i \end{aligned}$$

which has an analytical solution for \(\alpha _v^\star = 2C\):

$$\begin{aligned} \textit{KL}(f||\pi _v) = \log \left( \frac{k_v\beta _v^{2C}}{2\varGamma (2C)}\right) + \frac{2C(2C+1)A_i}{\beta _v^2} + 2C\log (\beta _v) + \frac{2\textit{CB}_i}{\beta } - 2C. \end{aligned}$$

This divergence has always one (and only one) minimum in \(\mathbb R^+\), given by

$$\begin{aligned} \beta _v^\star = \frac{1}{2} \left( B_i + \sqrt{B_i^2 + 8 A_i (2C+1)}\right) . \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parisi, A., Liseo, B. Objective Bayesian analysis for the multivariate skew-t model. Stat Methods Appl 27, 277–295 (2018). https://doi.org/10.1007/s10260-017-0404-0

Download citation

Keywords

  • Multivariate skew-t model
  • Multivariate skew-normal model
  • Objective Bayes inference
  • Population Monte Carlo sampler
  • Skewness