Advertisement

Statistical Methods & Applications

, Volume 24, Issue 2, pp 335–338 | Cite as

Rejoinder to the discussion of “Analysis of Spatio-Temporal Mobile Phone Data: a Case Study in the Metropolitan Area of Milan”

  • Piercesare Secchi
  • Simone Vantini
  • Valeria VitelliEmail author
Article
  • 131 Downloads

Abstract

The paper is the rejoinder to the discussion of “Analysis of Spatio-Temporal Mobile Phone Data: a Case Study in the Metropolitan Area of Milan”.

Keywords

Big data Spatio-temporal data Non-stationary random field of functions Dimension reduction for spatially dependent functional data Differential penalization for smoothing Treelets 

References

  1. Antoniadis A, Poggi G (2015) Discussion of “Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan”. Stat Methods Appl. doi: 10.1007/s10260-015-0309-8
  2. Azzimonti L, Sangalli L, Secchi P, Domanin M, Nobile F (2014) Blood flow velocity field estimation via spatial regression with PDE penalization. J Am Stat Assoc. doi: 10.1080/01621459.2014.946036
  3. Delicado P (2015) Discussion of “Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan” by P. Secchi, S. Vantini, and V. Vitelli. Stat Methods Appl. doi: 10.1007/s10260-015-0320-0
  4. Della Rossa F, D’Angelo C, Quarteroni A (2010) A distributed model of traffic flows on extended regions. Netw Heterog Media 5(3):525–544MathSciNetCrossRefzbMATHGoogle Scholar
  5. Gonzáles-Manteiga V, Crujeiras R (2015) Discussion on the paper: “Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan” by P. Secchi, S. Vantini, and V. Vitelli. Stat Methods Appl. doi: 10.1007/s10260-015-0318-7
  6. Grané A, Romera R (2015) Piercesare Secchi, Simone Vantini and Valeria Vitelli: analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan. Stat Methods Appl. doi: 10.1007/s10260-015-0310-2
  7. Horvath L, Kokoszka P (2012) Inference for functional data with applications. Springer series in statisticsGoogle Scholar
  8. Kokoszka P, Secchi P, Vantini S, Vitelli V (2015) Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan. Stat Methods Appl. doi: 10.1007/s10260-015-0300-4
  9. Nicolis O, Mateu G (2015) Discussion of the paper “analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan”. Stat Methods Appl. doi: 10.1007/s10260-015-0311-1
  10. Ramsay J (2015) Discussion of Secchi, Vantini and Vitelli paper. Stat Methods Appl. doi: 10.1007/s10260-015-0312-0
  11. Sangalli L, Ramsay J, Ramsay T (2013) Spatial spline regression models. J R Stat Soc Ser B 75(4):681–703MathSciNetCrossRefGoogle Scholar
  12. Secchi P, Vantini S, Zanini P (2014) Hierarchical independent component analysis: a multi-resolution non-orthogonal data-driven basis. Tech. Rep. 01, MOX, Dipartimento di Matematica, Politecnico di MilanoGoogle Scholar
  13. Sørensen H, Markussen B, Tolver A (2015) Discussion of “Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan” by P. Secchi, S. Vantini, and V. Vitelli. Stat Methods Appl. doi: 10.1007/s10260-015-0317-8

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Piercesare Secchi
    • 1
  • Simone Vantini
    • 1
  • Valeria Vitelli
    • 2
    Email author
  1. 1.MOX - Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  2. 2.Department of Biostatistics, Oslo Center for Biostatistics and EpidemiologyUniversity of OsloOsloNorway

Personalised recommendations