Statistical Methods & Applications

, Volume 22, Issue 1, pp 97–112 | Cite as

Discussing the “big n problem”

  • Giovanna Jona LasinioEmail author
  • Gianluca Mastrantonio
  • Alessio Pollice


When a large amount of spatial data is available computational and modeling challenges arise and they are often labeled as “big n problem”. In this work we present a brief review of the literature. Then we focus on two approaches, respectively based on stochastic partial differential equations and integrated nested Laplace approximation, and on the tapering of the spatial covariance matrix. The fitting and predictive abilities of using the two methods in conjunction with Kriging interpolation are compared in a simulation study.


SPDE INLA Tapering Large spatial data sets Spatial statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10260_2012_207_MOESM1_ESM.r (6 kb)
ESM 1 (R 6 kb)


  1. Banerjee S, Fuentes M: Bayesian modeling for large spatial datasets. WIREs Comput Stat 4, 59–66 (2012)CrossRefGoogle Scholar
  2. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall, LondonGoogle Scholar
  3. Banerjee S, Gelfand A, Finley A, Sang H: Gaussian predictive process models for large spatial data sets. J R Stat Soc Ser B (Stat Methodol) 70, 825–848 (2008). doi: 10.1111/j.1467-9868.2008.00663.x MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bolin D, Lindgren F (2011) Spatial wavelet Markov models are more efficient than covariance tapering and process convolutions. arXiv:11061980v1.,1106.1980
  5. Brenner SC, Scott R: The mathematical theory of finite element methods. Springer, Berlin (2007)Google Scholar
  6. Cressie N, Johannesson G: Fixed rank kriging for very large spatial data sets. J R Stat Soc Ser B (Stat Methodol) 70, 209–226 (2008). doi: 10.1111/j.1467-9868.2007.00633.x MathSciNetzbMATHCrossRefGoogle Scholar
  7. Finley A, Sang H, Banerjee S, Gelfand A: Improving the performance of predictive process modeling for large datasets. Computat Stat Data Anal 53, 2873–2884 (2009). doi: 10.1016/j.csda.2008.09.008 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Fuentes M: Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 102, 321–331 (2007). doi: 10.1198/016214506000000852 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Furrer R, Genton MG, Nychka D: Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15, 502–523 (2006). doi: 10.1198/106186006X132178 MathSciNetCrossRefGoogle Scholar
  10. Haas T: Local prediction of a spatio-temporal process with an application to wet sulfate deposition. J Am Stat Assoc 90, 1189–1199 (1995)zbMATHCrossRefGoogle Scholar
  11. Higdon D, Swall J, Kern J: Non-stationary spatial modeling. Bayesian Stat 6, 761–768 (1998)Google Scholar
  12. Ji WY, Simon W, Koray K, Ercan EK: Variant functional approximations for latent Gaussian models. Technical Report of Statistics Department. Trinity College, Dublin (2011)Google Scholar
  13. Kaufman C, Schervish M, Nychka D: Covariance tapering for likelihood based estimation in large spatial data set. J Am Stat Assoc 103, 1545–1555 (2008)MathSciNetCrossRefGoogle Scholar
  14. Lindgren F, Rue H: Explicit construction of GMRF approximations to generalised Matérn fields on irregular grids. Scand J Stat 35, 691–700 (2007)MathSciNetCrossRefGoogle Scholar
  15. Lindgren F, Rue H, Lindström J: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B (Stat Methodol) 73, 423–498 (2011). doi: 10.1111/j.1467-9868.2011.00777.x MathSciNetzbMATHCrossRefGoogle Scholar
  16. Mardia K, Goodall C, Refern E, Alonso F: The kriged Kalman filter. Test 7, 217–285 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Matsuda Y, Yajima Y: Fourier analysis of irregularly spaced data on R d. J R Stat Soc Ser B (Stat Methodol) 71, 191–217 (2009). doi: 10.1111/j.1467-9868.2008.00685.x MathSciNetzbMATHCrossRefGoogle Scholar
  18. Rubinstein BY: Simulation and the Monte Carlo method. Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  19. Rue H, Held L: Gaussian Markov random fields theory and applications, 1st edn. Chapman and Hall, London (2005)CrossRefGoogle Scholar
  20. Rue H, Tjelmeland H (2002) Fitting Gaussian Markov random fields to Gaussian fields. Scand J Stat, pp 31–49. doi: 10.1111/1467-9469.00058
  21. Rue H, Martino S, Chopin N: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B (Stat Methodol) 71, 319–392 (2009). doi: 10.1111/j.1467-9868.2008.00700.x MathSciNetzbMATHCrossRefGoogle Scholar
  22. Sampson P, Guttorp P: Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87, 108–119 (1992). doi: 10.2307/2290458 CrossRefGoogle Scholar
  23. Shaby B, Ruppert D (2012) Tapered covariance: Bayesian estimation and asymptotics. J Comput Graph Stat 21:433–452Google Scholar
  24. Stein ML, Chi Z, Welty LJ: Approximating likelihoods for large spatial data sets. J R Stat Soc Ser B (Stat Methodol) 66, 275–296 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Sun Y, Li B, Genton MG: Geostatistics for large datasets. In: Montero, J, Porcu, E, Schlather, M (eds) Advances and challenges in space-time modelling of natural events volume 207 of lecture notes in statistics chap 3, pp. 55–77. Springer, Berlin (2012)CrossRefGoogle Scholar
  26. Wendland H: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4, 389–396 (1995). doi: 10.1007/BF02123482 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Whittle P (1954) On stationary processes in the plane. Biometrika 41. doi: 10.2307/2332724
  28. Whittle P: Stochastic processes in several dimensions. Bull Int Stat Inst 40, 974–994 (1963)MathSciNetGoogle Scholar
  29. Zhang H: Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J Am Stat Assoc 99, 250–261 (2004)zbMATHCrossRefGoogle Scholar
  30. Zhang H, Du J: Covariance tapering in spatial statistics. In: Mateu, E, Porcu, J (eds) Positive definite functions from Schoenberg to space-time challenges, Gráficas Castañ, s.l. (2008)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Giovanna Jona Lasinio
    • 1
    Email author
  • Gianluca Mastrantonio
    • 1
  • Alessio Pollice
    • 2
  1. 1.Department of Statistical SciencesSapienza University of RomeRomeItaly
  2. 2.Department of Economics and MathematicsUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations