Statistical Methods and Applications

, Volume 15, Issue 3, pp 271–293 | Cite as

A survey of robust statistics

  • Stephan MorgenthalerEmail author
Original Article


We argue that robust statistics has multiple goals, which are not always aligned. Robust thinking grew out of data analysis and the realisation that empirical evidence is at times supported merely by one or a few observations. The paper examines the outgrowth from this criticism of the statistical method over the last few decades.


Robust Method Outlier Detection Robust Statistic Breakdown Point Tail Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alqallaf F, Van Aelst S, Yohai VJ, Zamar RH (2005) A model for contamination in multivariate data. SubmittedGoogle Scholar
  2. 2.
    Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection-pursuit approach revisited. J Multivariate Anal 95:206–226zbMATHCrossRefGoogle Scholar
  3. 3.
    Hubert M, Vanden Branden K (2003) Robust methods for partial least squares regression. J Chemometrics 17:537–549CrossRefGoogle Scholar
  4. 4.
    Hubert M, Rousseeuw PJ, Vanden Branden K (2005) ROBPCA: a new approach to robust principal components analysis. Technometrics 47:64–79CrossRefGoogle Scholar
  5. 5.
    Liu RY, Parelius J, Singh K (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference. Ann Stat 27:783–840zbMATHGoogle Scholar
  6. 6.
    Meer P, Mintz D, Rosenfeld A, Kim DY (1991) Robust regression methods in computer vision: a review. Int J Comput Vis 6:59–70CrossRefGoogle Scholar
  7. 7.
    Rousseeuw PJ, Hubert M (1999) Regression depth. J Am Stat Assoc 94:388–402zbMATHCrossRefGoogle Scholar
  8. 8.
    Rousseeuw PJ, Ruts I, Tukey JW (1999) The bagplot: a bivariate boxplot. Am Stat 53:382–387CrossRefGoogle Scholar
  9. 9.
    Rousseeuw PJ, Van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41:212–223CrossRefGoogle Scholar
  10. 10.
    Rousseeuw PJ, Van Driessen K (2006) Computing LTS regression for large data sets. Data Mining Know Discovery 12:29–45CrossRefGoogle Scholar
  11. 11.
    Salibian-Barrera M, Zamar RH (2002) Bootstrapping robust estimates of regression. Ann Stat 30:556–582zbMATHCrossRefGoogle Scholar
  12. 12.
    Salibian-Barrera M, Van Aelst S, Willems G (2005) PCA based on multivariate MM-estimators with fast and robust bootstrap. J Am Stat Assoc (to appear)Google Scholar
  13. 13.
    Salibian-Barrera M, Yohai V (2006) A fast algorithm for S-regression estimates. J Comput Graph Stat 15:414–427CrossRefGoogle Scholar
  14. 14.
    Van Aelst S, Rousseeuw PJ, Hubert M, Struyf A (2002) The deepest regression method. J Multivariate Anal 81:138–166zbMATHCrossRefGoogle Scholar
  15. 15.
    Van Aelst S, Willems G (2005) Multivariate regression S-estimators for robust estimation and inference. Stat Sinica 15:981–1001zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of MathematicsEcole Polytechnique fédérale de LausanneLausanneSwitzerland
  2. 2.EPFL FSB IMALausanneSwitzerland

Personalised recommendations