Acta Mathematicae Applicatae Sinica

, Volume 18, Issue 2, pp 185–200 | Cite as

Local and Parallel Finite Element Algorithms for Eigenvalue Problems

Original Papers

Abstract

Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.

Keywords

Eigenvalue finite element local algorithm parallel algorithm 

2000 MR Subject Classification

65N15 65N30 65N55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev spaces. Academic Press, New York, 1975Google Scholar
  2. 2.
    Axelsson, O., Layton, W.: A two-level discretization of nonlinear boundary value problems. SIAM J. Numer. Anal., 33: 2359–2374 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Babuska, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp., 1989, 52: 275–297MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Babuska, I., Osborn, J.E.: Eigenvalue problems, handbook of numerical analysis, vol.2, finite element methods (part 1). Ciarlet, P.G., Lions, J.L., eds., Elsevier, 1991, 641–792Google Scholar
  5. 5.
    Baker, N., Holst, M., Wang, F.: Adaptive multilevel finite element solution ofthe Poisson-Boltzmann equation IT: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem., 21: 1343–1352 (2000)CrossRefGoogle Scholar
  6. 6.
    Bank, R.E.: Hierarchical bases and the finite element method. Acta Numerica, 5: 1–43 (1996)MathSciNetGoogle Scholar
  7. 7.
    Bank, R.E., Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput., 22: 1411–1443 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bedivan, D.M.: A two-grid method for solving elliptic problems with inhomogeneous boundary conditions. Comput. Math. Appl., 29: 59–66 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bramble, J.H.: Multigrid methods, pitman research notes in mathematics, Vol.294. London Co-published in the USA with Wiley, New York, 1993Google Scholar
  10. 10.
    Chan, T., Mathew, T.: Domain decomposition algorithms. Acta Numerica, 3: 61–143 (1994)Google Scholar
  11. 11.
    Chatelin, F. Spectral approximations of linear operators. Academic Press, New York, 1983Google Scholar
  12. 12.
    Ciarlet, P.G., Lions J.L. Handbook of numerical analysis, Vol.2, finite element methods (Part I). North-Holland, 1991Google Scholar
  13. 13.
    Dawson, C.N., Wheeler, M.F.: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations. Contemp. Math., 180: 191–203 (1994)Google Scholar
  14. 14.
    Dawson, C.N., Wheeler, M.F., Woodward, C.S. A two-grid finite difference scheme for nonlinear parabolic equations. Contemp. Math., 35: 435–452 (1988)Google Scholar
  15. 15.
    Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston, MA, 1985Google Scholar
  16. 16.
    Hackbusch, W.: Multigrid methods and applications. Springer-Verlag, New York, 1985Google Scholar
  17. 17.
    Holst, M., Baker, N., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Poltzmann equation I: algorithms and examples. J. Comput. Chem., 21: 1319–1342 (2000)CrossRefGoogle Scholar
  18. 18.
    Layton, W., Lenferink, W.: Two-level picard and modified Picard methods for the Navier-Stokes equations. Appl. Math. Comp., 69: 263–274 (1995)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal., 32: 1170–1184 (1995)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nitsche, J., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comp., 28: 937–955 (1974)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rannacher, R., Scott, R.: Some optimal error estimate for piecewise linear finite element approximations. Math. Comp., 38: 437–445 (1982)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods. Math. Comp., 31: 414–442 (1977)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods, Part II. Math. Comp., 1995, 64: 907–928MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schatz, A.H., Wang, J.: Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions. Math. Comp., 65: 19–27 (1996)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Utnes, T.: Two-grid finite element formulations of the incompressible Navier-Stokes equations. Comm. Numer. Methods Engrg., 34: 675–684 (1997)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Wahlbin, L.B. Local behavior in finite element methods, handbook of numerical analysis, Vol. II, finite element methods (Part 1). Ciarlet, P.G., Lions, J.L., eds. Elsevier, 1991, 355–522Google Scholar
  27. 27.
    Wahlbin, L.B. Superconvergence in Galerkin finite element methods, Vol.1605. Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 1995Google Scholar
  28. 28.
    Xu, J.: A new class ofiter ative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal., 29: 303–319 (1992)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Review, 34(4): 581–613 (1992)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Xu, J. A novel two-grid method for semilinear equations. SIAM J. Sci. Comput., 15: 231–237 (1994)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Xu, J. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal., 33: 1759–1777 (1999)CrossRefGoogle Scholar
  32. 32.
    Xu, J., Zhou, A.: Some local and parallel properties of finite element discretizations. In: Proc. 11th International Conference on DDM, Eds., C.H. Lai, P.E. Bjφsted, M. Cross & O.B. Widlund, DDM.org, 1999, 140–147Google Scholar
  33. 33.
    Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp., 69: 881–909 (2000)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comp., 70: 17–25 (2001)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comp. Math., 14: 293–327 (2001)MATHCrossRefGoogle Scholar
  36. 36.
    Xu, J., Zou, J.: Some non-overlapping domain decomposition methods. SIAM Review, 40: 857–914 (1988)CrossRefGoogle Scholar
  37. 37.
    Yserentant, H.: Old and new proofs for multigrid algorithms. Acta Numerica, 2: 285–326 (1993)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhou, A., Liem, C.L., Shih, T.M., Lü, T.: Error analysis on bi-parameter finite elements. Comput. Methods Appl. Mech. Engrg., 158: 329–339 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Center for Computational Mathematics and Applications and Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Institute for Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations