Acta Mathematicae Applicatae Sinica

, Volume 18, Issue 1, pp 9–14

Homogenization of Differential Operators

Original Papers


In this note, we present a method of constructing the homogenized operator for a general sequence of differential operators. As an example, we construct the homogenized operator for a sequence of linear parabolic operators.


Homogenization Weak limit Weak continuity of nonlinear operators 

2000 MR Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bensoussan, A., Lions, J.L., Papanicolaou, G. Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, New York, 1978Google Scholar
  2. 2.
    Coifman, R., Lions, P.L., Meyer, Y., Semmes, S. Compensated Compactness and Hardy Spaces. C.R. Acad. Sci. Paris. Ser. I Math., 1989, 309(18): 945–949MATHMathSciNetGoogle Scholar
  3. 3.
    Evans, L.C. Weak Convergence Methods for Nonlinear Partial Differential Equations. AMS Regional Conference Series in Mathematics, Vol.74, 1988Google Scholar
  4. 4.
    Zhikov, V.V., Kozlov, S.M., Oleinik, O.A. G-convergence of Parabolic Operators. Russian Math. Surveys, 1981, 36(1): 9–60MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Murat, F. Compacité par Comensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1978, Vol.4, No.5: 485–507MathSciNetGoogle Scholar
  6. 6.
    Tartar, L. Compensated Compactness and Applications to Partial Differential Equations. Heriot-Watt Sympos., Vol. IV, Pitman, New York, 1979Google Scholar
  7. 7.
    Coifman, R., Meyer, Y. Private communications.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege Park, MDUSA

Personalised recommendations